\(\text{If you grind through it using }a_1,~a_2 \text{ as the first two sequence elements you get}\\ s =\left\{a_1,a_2,a_1+a_2,a_1+2 a_2,2 a_1+3 a_2,3 a_1+5 a_2,5 a_1+8 a_2,8 a_1+13 a_2,13 a_1+21 a_2,21 a_1+34 a_2\right\}\\ \text{Summing we get }\\ \sum \limits_{n=1}^{10}~s_k = 55 a_1+88 a_2\\ s_7=5 a_1+8 a_2 = 6\\ a_2 = \dfrac{1}{8} \left(6-5 a_1\right)\\ \text{dumping this into the sum we find (like magic!)}\\ \sum \limits_{n=1}^{10}~s_k = 66\)
.