Anmelden
Login
Benutzername
Passwort
Login
Passwort vergessen?
Rechner
Forum
+0
Formeln
Mathematik
Hilfe
Komplexe Zahlen
Integralrechnung
Differentialrechnung
Gleichungen
Funktionsgraphen
Lineare Algebra - Vektoralgebra
Zahlentheorie
Prozentrechnung
Standard-Funktionen
Wahrscheinlichkeitsrechnung
Trigonometrie
Einheiten-Umrechnung
Rechnen mit Einheiten
Über Uns
Impressum
Datenschutzrichtlinie
Nutzungsbedingungen
Credits
Google+
Facebook
Email
MEMEG0D
Benutzername
MEMEG0D
Punkte
260
Membership
Stats
Fragen
65
Antworten
3
65 Questions
3 Answers
0
2
2
+260
Number Theory
Carl writes eight consecutive three-digit numbers on a blackboard. Each number that Carl writes is divisible by 2, 3, 4, or 5. What is the sum of the digits of the smallest number that Carl wrote?
●
●
MEMEG0D
30.10.2024
0
2
2
+260
Number Theory
When a prime is divided by 60, the remainder is a composite number. When a second prime is divided by 60, the remainder is a prime. Find the smallest possible value of the second prime.
●
●
MEMEG0D
30.10.2024
0
3
1
+260
Number Theory
How many three-digit numbers are equal to five times the sum of their digits?
●
MEMEG0D
30.10.2024
0
3
0
+260
Number Theory
A four-digit hexadecimal integer is written on a napkin such that the units digit is illegible. The first three digits are 2, $F$, and 1. If the integer is a multiple of $19_{10}$, what is the units digit?
MEMEG0D
29.10.2024
0
2
1
+260
Number Theory
The numbers $24^2 = 576$ and $56^2 = 3136$ are examples of perfect squares that have a units digits of $6.$
If the units digit of a perfect square is $5,$ then what are the possible values of the tens digit?
●
MEMEG0D
29.10.2024
0
4
0
+260
Number Theory
Which of the residues 0, 1, 2, ..., 11 satisfy the congruence 3x = 1 mod 12?
MEMEG0D
29.10.2024
0
4
0
+260
Number Theory
Which of the residues 0, 1, 2, 3, 4 satisfy the congruence x^5 = 0 mod 5?
MEMEG0D
29.10.2024
+1
6
0
+260
Number Theory
What are the first 5 digits after the decimal point (technically the hexadecimal point...) when the fraction $\frac{2}{7}$ is written in base $16$?
MEMEG0D
28.10.2024
0
5
0
+260
Number Theory
Let $N$ be a positive integer. The number $N$ has three digits when expressed in base $7$. When the number $N$ is expressed in base $12$, it has the same three digits, in reverse order. What is $N$? (Express your answer in decim
mehr ..
MEMEG0D
28.10.2024
0
4
0
+260
Number Theory
What is the largest positive integer $n$ such that $1457$, $1797$, $709$, $15$, $24$, $197$, $428$ all leave the same remainder when divided by $n$?
MEMEG0D
28.10.2024
«
neueste
5
4
..
2
1
»
#1
+260
0
The answer is 19.
MEMEG0D
vor 4 Stunden