Loading [MathJax]/jax/output/SVG/jax.js
 

hectictar

avatar
Benutzernamehectictar
Punkte9490
Membership
Stats
Fragen 10
Antworten 3005

 #1
avatar+9490 
+2

By the distance formula...

 

distance between  (2, 5)  and  (-6, y)   =   (62)2+(y5)2

 

The problem tells us that the distance between  (2, 5)  and  (-6, y)  is  10 units, so.....

 

(62)2+(y5)2=10

                                                          Square both sides of the equation.

(-6 - 2)2 + (y - 5)2  =  100

                                                          Multiply out each exponent on the left side.

( -8 )2 + (y - 5)(y - 5)  =  100

 

64 + y2 - 10y + 25  =  100

                                                          Combine  64  and  25  to get  89

y2 - 10y + 89  =  100

                                                          Subtract  100  from both sides of the equation.

y2 - 10y - 11  =  0

                                                          Factor the left side.

(y - 11)(y + 1)  =  0

                                                          Set each factor equal to zero and solve for  y .

y - 11  =   0       or       y + 1  =  0

   y  =  11                      y  =  -1

 

Since  y > 0  ,  the solution must be  y = 11   smiley

26.06.2018
 #2
avatar+9490 
+2

See

 

here:   https://web2.0calc.com/questions/help-plz_8828

 

and here:  https://web2.0calc.com/questions/please-help_50163

 

Confusedperson, if you use someone else's answer you need to give that person credit. If you find the answer somewhere else, please put a link to that source.

22.06.2018
 #1
avatar+9490 
+2

4 sin2x   =   4 cos x  +  5

                                                   By the Pythagorean identity,   sin2x  =  1 - cos2x    so....

4( 1 - cos2x )   =   4 cos x  +  5

                                                   Distribute the  4  to the terms in parenthesees.

4  -  4 cos2x   =   4 cos x  +  5

                                                   Add   4 cos2 x   to both sides of the equation.

4   =   4 cos2x  +  4 cos x  +  5

                                                   Subtract  4  from both sides of the equation.

0   =   4 cos2x  +  4 cos x  +  1

                                                   Split   4 cos x   into two terms that we can use to factor by grouping.

 

0   =   4 cos2x  +  2 cos x  +  2 cos x  +  1

 

0   =   2 cos x ( 2 cos x  +  1 )  +  1( 2 cos x  +  1 )

 

0   =   ( 2 cos x  +  1 )( 2 cos x  +  1 )

 

0   =   ( 2 cos x  +  1 )2

                                      Take the square root of both sides.

0   =   2 cos x  +  1

                                      Subtract  1  from both sides.

-1   =   2 cos x

                                      Divide both sides by  2 .

-1/2   =   cos x

 

The angle that has a cosine of   -1/2   in the interval  [0, pi)   is   2 pi / 3

 

x  =  2 pi / 3

22.06.2018
 #4
avatar+9490 
0
21.06.2018
 #2
avatar+9490 
+1

Let  V  be the volume of the balloon.

 

Let  r1  be the radius of the sphere.

 

Let  r2  be the radius of the hemisphere.

 

V=43π(r1)3 34πV=34π43π(r1)3 3V4π=(r1)3 33V4π=3(r1)3 33V4π=r1                 Solve this equation for  r1

 

 

V=1243π(r2)3 V=23π(r2)3 32πV=32π23π(r2)3 3V2π=(r2)3 33V2π=3(r2)3 33V2π=r2                  Solve this equation for  r2 .

 

 

The ratio of  r1  to  r2  can be expressed in the form   3a   for some real number  a .

 

r1r2=3a 33V4π33V2π=3a 3V4π3V2π=a 3V4π2π3V=a 1421=a 24=a 12=a      Plug in the equivalent expressions of  r1  and  r2  and solve for  a .

21.06.2018