ab + a + b = 524 → b(1 + a) = [524 - a] → b = [524 - a] / [ 1 + a]
bc + b + c = 146 → [524 - a] / [ 1 + a]c + [524 - a] / [ 1 + a] + c = 146 →
c ( [524 - a] / [ 1 + a] + 1 ) = 146 - [524 - a] / [ 1 + a] →
c ( [ 1 + a + 524 - a] / [ 1 + a] = ( [ 146 + 146a - 524 + a] / [1 + a] →
c (525) = (147a - 378) → c = (147a - 378)/ (525)
cd + c + d = 104 → (147a - 378)/ (525)d + (147a - 378)/ (525) + d = 104 →
d( [ 147a - 378]/ (525) + 1 ) = 104 - (147a - 378)/ (525) →
d ( 525 - 378 + 147a) / (525) = (54600 + 378 - 147a) / (525) →
d (147 + 147a) = (54978 - 147a) → 147d (1 + a) = (54978 - 147a) →
d (1 + a) = (374 - a) → d = (374 - a) / (1 +a)
Therefore
abcd = 8! = 40320
a* [524 - a] / [ 1 + a] * (147a - 378)/ (525) * (374 - a) / (1 +a) = 40320
a * (524 -a) (147a - 378)(374 - a) = 40320 (525) (1 + a)^2 ... simplify
147a^4 - 132384a^3 + 29147916a^2 -74078928a = 40320 (525)(1 + a)^2
21a( 7a^3 - 6304a^2 + 1387996a - 3527568) = 40320 (525)(1 + a)^2
a ( 7a^3 - 6304a^2 + 1387996a - 3527568) = 40320(25)(1 + a)^2
7a^4 - 6304a^3 + 1387996a^2 - 3527568a = 1008000a^2 + 2016000a + 1008000
7a^4 - 6304a^3 + 379996a^2 - 5543568a - 1008000 = 0 factor
(a - 24) (7a^3 -6136a^2 +232732a + 42000) = 0
a = 24 is the only integer solution
b = [524 - 24] / [ 1 + 24] = 500/25 = 20
c = (147(24) - 378)/ (525) = 6
d = (374 - 24) / (1 +24) = 350 / 25 = 14
And 24 * 20 * 6 * 14 = 40320
And a - d = 24 - 14 = 10
