This boils down to finding the side length of an equiateral triangle inscribed in a circle. Of course, the area is maximized when the side lengths are maximized....!!!
Applying the Calculus to our given problem where r = 4.5 and x = s
We have
A = .5x(4.5 + √(20.25 - .25x^2))
A = 2.25x + .5x√(20.25 - .25x^2)
dA/dx = 2.25 +.5(20.25 - .25x^2)^(.5) - (.125x^2)(20.25 - .25x^2)^(-.5) = 0
18 + 4(20.25 - .25x^2)^(.5) - x^2(20.25 - .25x^2)^(-.5) = 0 rearrange
18 + 4(20.25 - .25x^2)^(.5) = x^2(20.25 - .25x^2)^(-.5)
18 (20.25 - .25x^2)^(.5) + 4 (20.25 - .25x^2) = x^2
18(20.25- .25x^2)^(.5) = x^2 - 4 (20.25 - .25x^2) square both sides
324(20.25- .25x^2) = x^4 - 8 (20.25 - .25x^2)x^2 + 16(20.25-.25x^2)^2
6561 - 81x^2 = x^4 - 162x^2 + 2x^4 + 16(6561/16 - 61/8x^2 + 1/16x^4)
6561 - 81x^2 = 4x^4 - 324x^2 +6561
4x^4 - 243x^2 = 0 factor
x^2 (4x^2 - 243) = 0 reject x =0
4x^2 - 243 - 0
4x^2 = 243
x^2 = 243/4
x = √(81 * 3) / 2 = (9/2)√3 = 4.5√3 = s
And this result can be generalized to r√3 for any given radius
