Note that :
sin^2(2x) = [1 - cos(4x)]/ 2 ......so we have.....
[ 1 - cos4(x + h)] / 2] * [ 1/h] - [1 - cos(4x)] / 2 * [ 1/h ] =
[1 - cos(4x + cos4h)] / 2h - [1 - cos(4x)] 2h =
[cos(4x) - cos(4x + 4h) ] / 2h =
[ cos(4x) - [cos4xcos4h - sin4xsin4h] ] / 2h =
[ cos4x ][1 - cos4h] / 2h + sin4xsin4h/ 2h [multiply top/bottom of both fractions by 2]
[2cos4x] [(1 - cos4h) / 4h ] + [2sin4x] [sin4h/ 4h ] let h → 0
[2cosx * 0] + [2sin4x * 1 ] =
2sin4x =
2sin(2x + 2x) =
2[ sin2xcos2x + sin2xcos2x] =
2 [ 2 * sin2xcos2x] =
4[sin2x] [cos2x]
-------------------------------------------------------------------------
Note that : [sin(2x)]^2 = [sin2x ] * [sin2x] (1)
And using the Product Rule, the derivative of (1) =
[2cos2x] [sin2x] + [sin2x][ 2 cos2x] =
[2cos2x] [ sin2x + sin2x] =
[2cos2x] [2sin2x] =
4[sin2x][cos2x]
