Nice, Melody.....
ST can also be found, thusly :
AD = 6/tan(30) = 6sqrt(3)
And, using similar triangles, we have
DS / AD ≈ AD / [DS + ST]
DS^2 + DS*ST = AD^2
ST = [ AD^2 - DS^2] / DS
ST = [ 108 - 36] / 6 = [ 72 / 6] = 12
And the area is :
[DS + ST + TC] * AD =
[6 + 12 + 3] * 6/tan (30) = 126/tan(30) = 126*sqrt(3) units^2
