CalculatorUser

avatar
BenutzernameCalculatorUser
Punkte2864
Membership
Stats
Fragen 94
Antworten 1012

+4
1085
2
avatar+2864 
Off-Topic
CalculatorUser  01.01.2020
 #1
avatar+2864 
+3

.I literally just watched a video on how to do this, this is a learning process for me too smiley

I am assuming that you learned the trig vocabulary for this as you asking these problems

________________________

 

Lets first do a cosine graph cuz its easier

 

This is the base equation for a cosine graph:

 

\(y=A\cos{b}(x-h)+c\)

 

________________________________________

 

So first find the amplitude, which is the height of the waves of the graph. (using y-values)

 

\(\text{Amplitude}=|\frac{\text{Max}-\text{Min}}{2}|\)

 

\(|\frac{-5-(-4)}{2}|\)

 

\(|\frac{-1}{2}|\)

 

\(\text{Amplitude}=\frac{1}{2}\)


Now we have the "A" value

 

\(y=\frac{1}{2}\cos{b}(x-h)+c\)

_______________________________________

 

Ok now we have to find the period

We first find the positive difference of the x values to find the horizontal distance.

 

\(|-1-3.5|=4.5\)

 

Then we double what we got

 

\(9\)

 

Then we solve for the b-value

 

\(9=\frac{2\pi}{b}\rightarrow9b=2pi\rightarrow{b}=\frac{2pi}{9}\)

 

Now we have

\(y=\frac{1}{2}\cos{\frac{2pi}{9}}(x-h)+c\)

_________________________________________

Now we have to find the phase shift (h-value)

 

Since it has shifted -1,                          ( coordinate (-1, -5) tells us that. )

 

We now have:

\(y=\frac{1}{2}\cos{\frac{2pi}{9}}(x+1)+c\)

___________________________________________

Now we have to find the vertical shift (c-value)

Formula for that is 

 

\(c=\frac{\text{Maximum}}{2}\)

\(c=\frac{-5+(-4)}{2}\)

\(c=-4.5\)

____________________________________________

 

So the equation of the sinusoidal graph is

\(y=\frac{1}{2}\cos{\frac{2pi}{9}}(x+1)-4.5\)

 

 

This is the cosine graph.

 

This is the video I learned from, if you want to find the sine graph, follow the steps in the video.

13.09.2019