heureka

avatar
Benutzernameheureka
Punkte26376
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26376 
+1

Find the size of the smallest angle between the two hands of a clock displaying these times.

10:20, 6:55, 4:35, 2:27 and 11:09

 

1. angular speed = \(\omega\)

minutes hand: \(\omega_{\text{m}} = \frac{360^{\circ}}{1\ h}\)

hour hand: \(\omega_{\text{h}} = \frac{360^{\circ}}{12\ h}\)

 

2. angle between the two hands = \(\alpha\)

\(\begin{array}{rcll} \alpha &=& ( \omega_{\text{m}} - \omega_{\text{h}} ) \cdot t \\ \alpha &=& \Big( \frac{360^{\circ}}{1\ h} - \frac{360^{\circ}}{12\ h} \Big)\cdot t \\ \alpha &=& 360^{\circ}\cdot \Big( \frac{1}{1\ h} - \frac{1}{12\ h} \Big)\cdot t \\ \mathbf{\alpha} & \mathbf{=} & \mathbf{360^{\circ}\cdot \frac{11}{12\ h} \cdot t} \\ \end{array} \)

 

3. Solution for 10:20, 6:55, 4:35, 2:27 and 11:09

\(\begin{array}{|rcll|} \hline t=10:20=10.\bar{3}\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 10.\bar{3}\ h \\ & \alpha & = & 3410^{\circ} \\ & \alpha & = & 3410^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{170^{\circ}} \\\\ t=6:55=6.91\bar{6}\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 6.91\bar{6}\ h \\ & \alpha & = & 2282.5^{\circ} \\ & \alpha & = & 2282.5^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{122.5^{\circ}} \\\\ t=4:35=4.58\bar{3}\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 4.58\bar{3}\ h \\ & \alpha & = & 1512.5^{\circ} \\ & \alpha & = & 1512.5^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{72.5^{\circ}} \\\\ t=2:27=2.45\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 2.45\ h \\ & \alpha & = & 808.5^{\circ} \\ & \alpha & = & 808.5^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{88.5^{\circ}} \\\\ t=11:09=11.15\ h & \alpha & = & 360^{\circ}\cdot \frac{11}{12\ h} \cdot 11.15\ h \\ & \alpha & = & 3679.5^{\circ} \\ & \alpha & = & 3679.5^{\circ} \pmod {360^{\circ} } \\ & \mathbf{\alpha} & \mathbf{=} & \mathbf{79.5^{\circ}} \\\\ \hline \end{array}\)

 

 

laugh

15.06.2017
 #1
avatar+26376 
+2

What is the general form of the equation of a circle with its center at (-2, 1) and passing through (-4, 1)?

 

center at \((x_c=-2,\ y_c= 1 )\)

passing through point at \((x_p=-4,\ y_p= 1 )\)

\(\text{radius}^2 = r^2 = (x_c-x_p)^2+(y_c-y_p)^2\)

 

general form of the equation of a circle: \((x-x_c)^2 +(y-y_c)^2 = r^2\)

 

so we have:

\(\small{ \begin{array}{|rcll|} \hline (x-x_c)^2 +(y-y_c)^2 &=& r^2 \qquad | \quad r^2 = (x_c-x_p)^2+(y_c-y_p)^2 \\ (x-x_c)^2 +(y-y_c)^2 &=& (x_c-x_p)^2+(y_c-y_p)^2 \\ x^2-2x_c\cdot x + \not{x_c^2} + y^2-2y_c\cdot y + \not{y_c^2} &=& \not{x_c^2} -2x_cx_p + x_p^2 + \not{y_c^2}-2y_cy_p + y_p^2\\ x^2-2x_c\cdot x + y^2-2y_c\cdot y &=& -2x_cx_p + x_p^2 + -2y_cy_p + y_p^2 \\ x^2-2x_c\cdot x + y^2-2y_c\cdot y + 2x_cx_p - x_p^2 + 2y_cy_p - y_p^2 &=& 0 \\ x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + 2x_cx_p + 2y_cy_p - x_p^2 - y_p^2 &=& 0 \\ x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) &=& 0 \\ \hline \end{array} } \)

 

The general form of the equation of a circle with its center \((x_c,y_c) \)and passing through point \( (x_p,y_p) \) is:

\(\mathbf{x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) = 0} \)

 

\(\small{ \begin{array}{|lrcll|} \hline x_c=-2,\ y_c= 1 \\ x_p=-4,\ y_p= 1 \\\\ & x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) &=& 0 \\ & x^2+ y^2 -2\cdot (-2)\cdot x -2\cdot 1\cdot y + (-4)\cdot[2\cdot(-2)-(-4)] + 1\cdot(2\cdot 1-1) &=& 0 \\ & x^2+ y^2 +4x -2y + (-4)\cdot(-4+4) + 1\cdot(2-1) &=& 0 \\ & x^2+ y^2 +4x -2y + 0 + 1\cdot 1 &=& 0 \\ & x^2+ y^2 +4x -2y + 1 &=& 0 \\ \hline \end{array} }\)

 

The equation of the circle is \(x^2+ y^2 +4x -2y + 1 = 0 \)

 

laugh

07.06.2017
 #1
avatar+26376 
+6

There is a row of Pascal's triangle that has three successive positive entries,"a" "b"  and "c"

such that "b" is double "c" 

and "a" is triple "c"

If this row begins "1,n,"  then find n.

 

Three successive positive entries:

\(\begin{array}{rcll} a&=&\binom{n}{k-1} \\ b&=&\binom{n}{k} \\ c&=&\binom{n}{k+1} \\ \end{array} \)

 

"b" is double "c" and "a" is triple "c"

\(\begin{array}{|rcll|} \hline a &= 3c &=& \binom{n}{k-1} \\ b &= 2c &=& \binom{n}{k} \\ c & &=& \binom{n}{k+1} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline (1) & 2c &=& \binom{n}{k} \quad & | \quad c = \binom{n}{k+1} \\ & 2\cdot \binom{n}{k+1} &=& \binom{n}{k} \quad & | \quad \binom{n}{k+1}= ( \frac{n-k}{k+1} ) \binom{n}{k} \\ & 2\cdot ( \frac{n-k}{k+1} ) \binom{n}{k} &=& \binom{n}{k} \\ & 2\cdot ( \frac{n-k}{k+1} ) &=& 1 \\ & \mathbf{ n-k } & \mathbf{=} & \mathbf{ \frac{k+1}{2} } \\\\ (2) & 3c &=& \binom{n}{k-1} \quad & | \quad c = \binom{n}{k+1} \\ & 3\cdot \binom{n}{k+1} &=& \binom{n}{k-1} \quad & | \quad \binom{n}{k+1}= ( \frac{n-k}{k+1} ) \binom{n}{k} \\ & 3\cdot ( \frac{n-k}{k+1} ) \binom{n}{k} &=& \binom{n}{k-1} \quad & | \quad \binom{n}{k-1}= ( \frac{k}{n-k+1} ) \binom{n}{k} \\ & 3\cdot ( \frac{n-k}{k+1} ) \binom{n}{k} &=& ( \frac{k}{n-k+1} ) \binom{n}{k} \\ & 3\cdot ( \frac{n-k}{k+1} ) &=& \frac{k}{n-k+1} \\ & 3\cdot (n-k)\cdot (n-k+1) &=& k\cdot (k+1) \quad & | \quad \mathbf{ n-k } \mathbf{=} \mathbf{ \frac{k+1}{2} } \\ & 3\cdot ( \frac{k+1}{2} )\cdot ( \frac{k+1}{2} +1) &=& k\cdot (k+1) \\ & 3\cdot ( \frac{k+1}{2} )\cdot ( \frac{k+3}{2} ) &=& k\cdot (k+1) \\ & \frac34\cdot (k+1)\cdot (k+3) &=& k\cdot (k+1) \\ & \frac34 \cdot (k+3) &=& k \\ & \frac34 k + \frac94 &=& k \\ & k-\frac34 k &=& \frac94 \\ & \frac14 k &=& \frac94 \\ & \mathbf{ k } & \mathbf{=} & \mathbf{9} \\\\ & \mathbf{ n-k } & \mathbf{=} & \mathbf{ \frac{k+1}{2} } \\ & n-9 & = & \frac{9+1}{2} \\ & n-9 & = & 5 \\ & \mathbf{ n } & \mathbf{=} & \mathbf{ 14 } \\ \hline \end{array}\)

 

The three successive positive entries are:

\(a=3003 =\binom{14}{8} \\ b=2002 =\binom{14}{9} \\ c=1001 =\binom{14}{10} \\ \)

and n is 14.

 

laugh

22.05.2017
 #2
avatar+26376 
+1

The center of a circle is located at (−2, 7) . The radius of the circle is 2.

What is the equation of the circle in general form?

 

A circle can be defined as the locus of all points that satisfy the equation
\((x-h)^2 + (y-k)^2 = r^2 \)  ( Standard Form )
where r is the radius of the circle,
and h,k are the coordinates of its center.

 

The general Form is:
\(x^2+y^2 +ax+by+c = 0\)

 

Standard Form to general Form:

\(\begin{array}{|rcll|} \hline (x-h)^2 + (y-k)^2 &=& r^2 \\ x^2-2xh+h^2+y^2-2yk+k^2 &=& r^2 \\ x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\ \hline \end{array} \)

 

a,b and c ?

\(\begin{array}{|rcll|} \hline x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\\\ \color{red}a &\color{red}=& \color{red}-2h \\\\ \color{red}b &\color{red}=& \color{red}-2k \\\\ \color{red}c &\color{red}=&\color{red}h^2+k^2-r^2\\ \hline \end{array} \)

 

If we have h,k and r, we can calculate a,b and c:

\(\begin{array}{|lcll|} \hline \mathbf{x^2+y^2 +ax+by+c = 0} \\ a = -2h \\ b = -2k \\ c =h^2+k^2-r^2 \\ \hline \end{array}\)

 

\(h=-2\\ k=7\\ r=2\)

\(\begin{array}{|lcll|} \hline a = -2h \\ a = -2\cdot(-2)\\ \mathbf{a = 4} \\\\ b = -2k \\ b = -2(7) \\ \mathbf{a = -14} \\\\ c =h^2+k^2-r^2 \\ c =(-2)^2+7^2-2^2 \\ c =4+49-4 \\ \mathbf{c =49} \\\\ x^2+y^2 +ax+by+c = 0 \\ \mathbf{x^2+y^2 +4x-14y+49 =0} \\ \hline \end{array} \)

 

The equation of the circle in general form is: \(x^2+y^2 +4x-14y+49 =0\)

 

laugh

16.05.2017