heureka

avatar
Benutzernameheureka
Punkte26376
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26376 
+2

The general form of the equation of a circle is x2+y2−4x−8y−5=0.

What are the coordinates of the center of the circle?

 

A circle can be defined as the locus of all points that satisfy the equation

\((x-h)^2 + (y-k)^2 = r^2\)  ( Standard Form )

where r is the radius of the circle,
and h,k are the coordinates of its center.

 

The general Form is:

\(x^2+y^2 +ax+by+c = 0\)

 

Standard Form to general Form:

\(\begin{array}{|rcll|} \hline (x-h)^2 + (y-k)^2 &=& r^2 \\ x^2-2xh+h^2+y^2-2yk+k^2 &=& r^2 \\ x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\ \hline \end{array} \)

 

h,k and r ?

\(\begin{array}{|rcll|} \hline x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\\\ a &=&-2h\\ \color{red}h &\color{red}=& \color{red}-\frac{a}{2} \\\\ b &=&-2k\\ \color{red}k &\color{red}=& \color{red}-\frac{b}{2} \\\\ c &=&h^2+k^2-r^2\\ c &=&(-\frac{a}{2})^2+(-\frac{b}{2})^2-r^2\\ c &=& \frac{a^2+b^2}{4} -r^2\\ r^2 &=& \frac{a^2+b^2}{4} -c \\ \color{red}r &\color{red}=& \color{red} \sqrt{\frac{a^2+b^2}{4} -c} \\ \hline \end{array} \)

 

If we have a,b and c, we can calculate h,k and r:

\(\begin{array}{|lcll|} \hline \mathbf{x^2+y^2 +ax+by+c = 0} \\ h = -\dfrac{a}{2} \\ k = -\dfrac{b}{2} \\ r = \sqrt{\dfrac{a^2+b^2}{4} -c} \\ \hline \end{array} \)


\(a=-4\\ b=-8\\ c=-5\)

\(\begin{array}{|lcll|} \hline \mathbf{x^2+y^2 -4x-8y-5 = 0} \\\\ h = -\dfrac{-4}{2} \\ \mathbf{h = 2} \\\\ k = -\dfrac{-8}{2} \\ \mathbf{k = 4} \\\\ r = \sqrt{\dfrac{(-4)^2+(-8)^2}{4} -(-5)} \\ r = \sqrt{\dfrac{16+64}{4} +5} \\ r = \sqrt{20 +5} \\ r = \sqrt{25} \\ \mathbf{r = 5} \\ \hline \end{array}\)

 

The coordinates of the center of the circle is (2,4) and the radius is 5

 

laugh

16.05.2017
 #7
avatar+26376 
+1

Given:

\(sin\alpha+sin\beta=1,\ cos\alpha+cos\beta=1\)

Find the value of

\(sin\alpha-cos\beta\)

 

\(\begin{array}{|lrcll|} \hline (1) & \sin(\alpha) + \sin(\beta) &=& 1 \\ (2) & \cos(\alpha) + \cos(\beta) &=& 1 \\ \hline (1)-(2): & \sin(\alpha) + \sin(\beta) - \Big(\cos(\alpha) + \cos(\beta) \Big) &=& 0 \\ & \sin(\alpha) + \sin(\beta) -\cos(\alpha) - \cos(\beta) &=& 0 \\ & \underbrace{\sin(\alpha) -\cos(\alpha)}_{=\sqrt{2}\sin(\alpha-45^{\circ})} &=& \underbrace{\cos(\beta) - \sin(\beta)}_{=-\sqrt{2}\sin(\beta-45^{\circ})} \\ & \sqrt{2}\sin(\alpha-45^{\circ}) &=& -\sqrt{2}\sin(\beta-45^{\circ}) \\ & \sin(\alpha-45^{\circ}) &=& - \sin(\beta-45^{\circ}) \\ & \sin(\alpha-45^{\circ}) &=& \sin\Big(-(\beta-45^{\circ})\Big) \\ & \sin(\alpha-45^{\circ}) &=& \sin(45^{\circ}-\beta ) \\ & \alpha-45^{\circ} &=& 45^{\circ}-\beta \\ & \alpha &=& 90^{\circ}-\beta \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \sin(\alpha) - \cos(\beta) \\ & =& \sin(90^{\circ}-\beta) - \cos(\beta) \\ & =& \cos(\beta) - \cos(\beta) \\ & =& 0 \\ \hline \end{array}\)

 

Proof:

\(\begin{array}{|rcll|} \hline \sin(\alpha) + \sin(\beta) &=& 1 \quad | \quad \alpha = 90^{\circ}-\beta \\ \sin(90^{\circ}-\beta) + \sin(\beta) &=& 1 \\ \cos(\beta) + \sin(\beta) &=& 1 \quad | \quad \cos(\beta) + \sin(\beta)=\sqrt{2}\sin(\beta+45^{\circ}) \\ \sqrt{2}\sin(\beta+45^{\circ}) &=& 1 \\ \sin(\beta+45^{\circ}) &=& \frac{1}{\sqrt{2}} \\ \beta+45^{\circ} &=& \arcsin( \frac{1}{\sqrt{2}} ) + n\cdot 360^{\circ} \qquad n \in \mathbb{Z} \\ \beta+45^{\circ} &=& 45^{\circ} + n\cdot 360^{\circ} \qquad n \in \mathbb{Z} \\ \beta &=& 90^{\circ} + n\cdot 360^{\circ} \qquad n \in \mathbb{Z} \\\\ \alpha &=& 90^{\circ}-\beta \\ \alpha &=& 90^{\circ}-(90^{\circ} + n\cdot 360^{\circ}) \qquad n \in \mathbb{Z} \\ \alpha &=& 0^{\circ} + n\cdot 360^{\circ} \qquad n \in \mathbb{Z} \\ \hline \end{array}\)

 

 

laugh

15.05.2017