+0  
 
0
157
2
avatar

Hallo,

 

kann mir bitte jemand anhand d), e) und f) erklären, wie man diese Aufgaben lösen muss? 

Guest 02.04.2017
Sortierung: 

2+0 Answers

 #1
avatar+211 
0

Das Prinzip ist das gleiche wie in allen Teilaufgaben, ich würde zuerst f'(x) bestimmen und dann f'(x) = m lösen. 

\(d) \\ f(x) = -{4 \over x} = -4x^{-1} \\ f'(x) = 4x^{-2} = {4 \over x^2}\\ {4 \over x^2} = 1 \Rightarrow x_{1/2} = \pm2\)

 

\(e) \\ f'(x) = {-2 \over x^3} +2 \\ {-2 \over x^3} +2 = {9 \over 4} \\ {-2 \over x^3} = {1 \over 4} \\ x^3 = -8 \\ x=-2 \)

 

\(f) \\ f'(x) = 5x^4+15x^2 \\ 5x^4+15x^2=4 \\ 5x^4 +15x^2 -4 = 0 \ \ \ | u=x^2 \\ 5u^2+15u-4=0 \\ u_{1/2} = {-15 \pm \sqrt{225+80} \over 10 } \Rightarrow u_1 = 0,246; \ u_2 = -3,246 \\ \Rightarrow x_{1/2} = \pm \sqrt{0,246} = \pm 0,5\)

Probolobo  02.04.2017
 #2
avatar
+1

Vorgerechnet hat das schon jemand anders, aber da du nach einer Erklärung gefragt hast:

Die erste Ableitung einer Funktion f(x) ist die Steigung m, demnach

1. Leitest du deine Funktion ab und erhältst f '(x)

2. Setzt du f '(x) = m, löst diese Gleichung und erhältst die x-Werte, an denen dein f(x) die Steigung m besitzt

3. Ermittelst du noch die Punkte, wie hier gefragt indem du die x-Werte in f(x) einsetzt.

Gast 03.04.2017

27 Benutzer online

avatar
Wir verwenden Cookies um Inhalt und Werbung dieser Webseite zu personalisieren und Social Mediainhalte bereitzustellen. Auch teilen wir Nutzungverhalten unserer Webseite mit unseren Werbe-, Analyse- und Social Media- Partnern.  Siehe Details