heureka

avatar
Benutzernameheureka
Punkte26367
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26367 
+1

Find dy/dx

Yx+XX+Xy= ab

 

\(\begin{array}{|rcll|} \hline y^x+x^x+x^y &=& a^b \\ y^x+x^x+x^y -a^b &=& 0 \\ \hline \end{array} \)

 

Formula:

\(\begin{array}{|rcll|} \hline \frac{dy}{dx} = - \dfrac{F_x}{F_y} \\ \hline \end{array} \)

 

\(\mathbf{F_x =\ ?} \begin{array}{|rcll|} \hline F_x &=& \frac{d }{dx}y^x + \frac{d }{dx}x^x + \frac{d }{dx}x^y + \frac{d }{dx}a^b \\\\ h &=& y^x \quad & | \quad \ln() \\ \ln(h) &=& x\cdot \ln(y) \\ \frac{h'}{h} &=& \ln(y) \\ h' &=& h\cdot \ln(y) \\ h' &=& y^x\cdot \ln(y) \\ \mathbf{ \frac{d }{dx}y^x } & \mathbf{=} & \mathbf{ y^x\cdot \ln(y) } \\\\ h &=& x^x \quad & | \quad \ln() \\ \ln(h) &=& x\cdot \ln(x) \\ \frac{h'}{h} &=& x\cdot \frac{1}{x} + 1\cdot \ln(x) \\ h' &=& h \cdot \Big( 1+\ln(x) \Big) \\ \mathbf{ \frac{d }{dx}x^x } & \mathbf{=} & \mathbf{ x^x \cdot \Big( 1+ \ln(x) \Big) } \\\\ h &=& x^y \quad & | \quad \ln() \\ \ln(h) &=& y\cdot \ln(x) \\ \frac{h'}{h} &=& \frac{y}{x} \\ h' &=& h \cdot \frac{y}{x} \\ h' &=& x^y \cdot \frac{y}{x} \\ \mathbf{ \frac{d }{dx}x^y } & \mathbf{=} & \mathbf{ x^y \cdot \frac{y}{x} } \\\\ \mathbf{ \frac{d }{dx}a^b } & \mathbf{=} & \mathbf{ 0 } \\ \hline \end{array} \)

 

\(\mathbf{F_y =\ ?} \begin{array}{|rcll|} \hline F_y &=& \frac{d }{dy}y^x + \frac{d }{dy}x^x + \frac{d }{dy}x^y +\frac{d }{dy}a^b \\\\ h &=& y^x \quad & | \quad \ln() \\ \ln(h) &=& x\cdot \ln(y) \\ \frac{h'}{h} &=& \frac{x}{y} \\ h' &=& h\cdot \frac{x}{y} \\ h' &=& y^x\cdot \frac{x}{y} \\ \mathbf{ \frac{d }{dy}y^x } & \mathbf{=} & \mathbf{ y^x\cdot \frac{x}{y} } \\\\ \mathbf{ \frac{d }{dy}x^x } & \mathbf{=} & \mathbf{ 0 } \\ h &=& x^y \quad & | \quad \ln() \\ \ln(h) &=& y\cdot \ln(x) \\ \frac{h'}{h} &=& \ln(x) \\ h' &=& h \cdot \ln(x) \\ h' &=& x^y \cdot \ln(x) \\ \mathbf{ \frac{d }{dy}x^y } & \mathbf{=} & \mathbf{ x^y \cdot \ln(x) } \\\\ \mathbf{ \frac{d }{dy}a^b } & \mathbf{=} & \mathbf{ 0 } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \frac{dy}{dx} &=& - \dfrac{F_x}{F_y} \\\\ \frac{dy}{dx} &=& - \dfrac{ y^x\cdot \ln(y) + x^x \cdot \Big( 1+ \ln(x) \Big) + x^y \cdot \frac{y}{x} + 0 } { y^x\cdot \frac{x}{y} + 0 + x^y \cdot \ln(x) + 0 } \\\\ \frac{dy}{dx} &=& - \dfrac{ y^x\cdot \ln(y) + x^x \cdot \Big( 1+ \ln(x) \Big) + x^y \cdot \frac{y}{x} } { y^x\cdot \frac{x}{y} + x^y \cdot \ln(x) } \\\\ \frac{dy}{dx} &=& - \dfrac{ y^x\cdot \ln(y) + x^x \cdot \Big( 1+ \ln(x) \Big) + x^{y-1} \cdot y } { y^{x-1}\cdot x + x^y \cdot \ln(x) } \\\\ \mathbf{ \frac{dy}{dx} } & \mathbf{=} & \mathbf{ - \dfrac{ y^x\cdot \ln(y) + x^x \cdot \Big( 1+ \ln(x) \Big) + x^{y-1} \cdot y } { x^y \cdot \ln(x) + y^{x-1}\cdot x } } \\ \hline \end{array}\)

 

laugh

25.07.2017
 #1
avatar+26367 
+2

lim n→∞{(1− 3/n)^3n +3*n'te√3n}

 

\(\lim \limits_{x\to 0} { \Big( \left( 1- \frac{3}{n} \right)^{3n} +3 \cdot \sqrt[n]{3n} \Big) }= \ ? \)

 

\(\begin{array}{|rcll|} \hline && \lim \limits_{x\to 0} { \Big( \left( 1- \frac{3}{n} \right)^{3n} +3 \cdot \sqrt[n]{3n} \Big) } \\ &=& \lim \limits_{x\to 0} {\Big( \left( 1- \frac{3}{n} \right)^{3n} \Big) } + \lim \limits_{x\to 0} {\Big( 3 \cdot \sqrt[n]{3n} \Big) } \\ \hline \end{array} \)

 

\(y=\lim \limits_{x\to 0} {\Big( \left( 1- \frac{3}{n} \right)^{3n} \Big) }= \ ?\)

\(\begin{array}{|rcll|} \hline \ln(y) &=& \ln\Big( \lim \limits_{x\to 0} \Big( \left( 1- \frac{3}{n} \right)^{3n} \Big) \Big) \\ &=& \lim \limits_{x\to 0} \Big( \ln \Big( \left( 1- \frac{3}{n} \right)^{3n} \Big) \Big) \\ &=& \lim \limits_{x\to 0} \Big( 3n\ln \left( 1- \frac{3}{n} \right) \Big) \\ &=& \lim \limits_{x\to 0} \Big( \frac{3\ln \left( 1- \frac{3}{n} \right)} {n^{-1}} \Big) \\\\ && \text{Regel von de l’Hospital anwenden} \\ && \text{Die 1. Ableitung von } 3\cdot \ln(1-3\cdot n^{-1}) \text{ lautet } 3 \cdot \frac{ [(-3)(-1)\cdot n^{-2} ] } {1-\frac{3}{n} } \\\\ &=& \lim \limits_{x\to 0} \Big( \frac{3 \cdot \frac{ [(-3)(-1)\cdot n^{-2} ] } {1-\frac{3}{n} } } {(-1)\cdot n^{-2}} \Big) \\ &=& \lim \limits_{x\to 0} \Big( \frac{ 3 \cdot[(-3)(-1)\cdot n^{-2} ] } { (1-\frac{3}{n})(-1)\cdot n^{-2} } \Big) \\ &=& \lim \limits_{x\to 0} \Big( \frac{ 3 \cdot(-3)} { (1-\frac{3}{n}) } \Big) \\ &=& \lim \limits_{x\to 0} \Big( \frac{ -9 } { (1-\frac{3}{n}) } \Big) \\ \ln(y) &=& \frac{ -9 } { 1-0 } \\ \ln(y) &=& -9 \\ e^{\ln(y)} = y &=& e^{-9}\\ y &=& \lim \limits_{x\to 0} {\Big( \left( 1- \frac{3}{n} \right)^{3n} \Big) }= e^{-9} \\ \hline \end{array}\)

 

 

\(\lim \limits_{x\to 0} {\Big( 3 \cdot \sqrt[n]{3n} \Big) } = \ ?\)

\(\begin{array}{|rcll|} \hline && \lim \limits_{x\to 0} {\Big( 3 \cdot \sqrt[n]{3n} \Big) } \\ &=& \lim \limits_{x\to 0} {\Big( 3 \cdot (3n)^{\frac{1}{n}} \Big) } \\ &=& \lim \limits_{x\to 0} {\Big( 3 \cdot e^{\ln \left((3n)^{\frac{1}{n}} \right) } \Big) } \\ &=& \lim \limits_{x\to 0} {\Big( 3 \cdot e^{ \frac{\ln(3n)} {n} } \Big) } \\ &=& 3 \cdot e^{ \lim \limits_{x\to 0} {\Big( \frac{\ln(3n)} {n} } \Big) } \\ && \text{Regel von de l’Hospital anwenden} \\ && \text{Die 1. Ableitung von } \frac{\ln(3n)} {n} \text{ lautet } \frac{ \frac{3}{3n} } {1} = \frac{3}{3n} = \frac{1}{n} \\\\ &=& 3 \cdot e^{ \lim \limits_{x\to 0} {\Big(\frac{1}{n}} \Big) } \\ &=& 3 \cdot e^0 \\ &=& 3 \cdot 1 \\ &=& 3 \\ \lim \limits_{x\to 0} {\Big( 3 \cdot \sqrt[n]{3n} \Big) } &=& 3 \\ \hline \end{array} \)

 

Somit erhalten wir insgesamt:

 

\(\lim \limits_{x\to 0} { \Big( \left( 1- \frac{3}{n} \right)^{3n} +3 \cdot \sqrt[n]{3n} \Big) } = e^{-9} + 3\)

 

laugh

21.07.2017
 #2
avatar+26367 
+1

Compute

\(1 \cdot \frac {1}{2} + 2 \cdot \frac {1}{4} + 3 \cdot \frac {1}{8} + \dots + n \cdot \frac {1}{2^n} + \dotsb.\)

 

Let \(r =\frac12\)

 

\(\begin{array}{|rcll|} \hline s_n &=& 1 \cdot \frac {1}{2} + 2 \cdot \frac {1}{4} + 3 \cdot \frac {1}{8} + \dots + n \cdot \frac {1}{2^n} \\\\ && r = \frac12 \\\\ \hline s_n &=& 1\cdot r + 2\cdot r^2 + 3\cdot r^3 + \dots + n \cdot r^n \\ rs_n &=& \qquad \quad 1\cdot r^2 + 2\cdot r^3 + \dots + (n-1) \cdot r^n + n\cdot r^{n+1} \\ \hline s_n -r\cdot s_n &=& r+r^2+r^3+ \dots +r^n-n\cdot r^{n+1} \\ s_n\cdot(1-r) &=& \underbrace{( r+r^2+r^3+ \dots +r^n )}_{=S_n} -n\cdot r^{n+1} \\ \hline && S_n = r+r^2+r^3+ \dots +r^n \\ && rS_n = \quad r^2+r^3 + \dots + r^{n+1} \\ \hline && S_n -r\cdot S_n = r - r^{n+1} \\ && S_n\cdot (1-r) = r - r^{n+1} \\ && S_n = \frac{r - r^{n+1}}{1-r} \\ \hline s_n\cdot(1-r) &=& \underbrace{( r+r^2+r^3+ \dots +r^n )}_{=S_n} -n\cdot r^{n+1} \\ s_n\cdot(1-r) &=& \frac{r - r^{n+1}}{1-r} -n\cdot r^{n+1} \\ s_n &=& \frac{1}{1-r} \cdot \Big( \frac{r - r^{n+1}}{1-r} -n\cdot r^{n+1} \Big) \\\\ && \frac{1}{1-r} = 2 \\\\ s_n &=& 2 \cdot \Big( 2\cdot(r - r^{n+1}) -n\cdot r^{n+1} \Big) \\ s_n &=& 2 \cdot ( 2\cdot r - 2\cdot r^{n+1} - n\cdot r^{n+1} ) \\ s_n &=& 2 \cdot r\cdot ( 2 - 2\cdot r^n - n\cdot r^n ) \\ \\ \mathbf{s_n} & \mathbf{=} & \mathbf{2 \cdot r\cdot \Big( 2 - (2+n)\cdot r^n \Big)} \quad & | \quad r=\frac12 \\ \\ s_n & = & 2 \cdot \frac12 \cdot \Big( 2 - (2+n)\cdot (\frac12)^n \Big) \\ s_n & = & 2 - (2+n)\cdot \frac{1}{2^n} \\ \\ \mathbf{s_n} & \mathbf{=} & \mathbf{2 - \frac{2+n}{2^n} } \\ \hline \end{array}\)

 

laugh

21.07.2017