Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1092
3
avatar

x^3+x^2+2x+2 factor by grouping so it ends up with two binomials.

 Dec 5, 2014

Best Answer 

 #2
avatar+26396 
+5

x^3+x^2+2x+2 factor by grouping so it ends up with two binomials.

Formula:$a+ax+x2+x3=(1+x)(a+x2)$Example: $$a=22+2x+x2+x3=(1+x)(2+x2)a=11+1x+x2+x3=(1+x)(1+x2)$

 Dec 5, 2014
 #1
avatar
+5

You have to play around with it a bit (or a lot) using trial-and-error trying different possibilities until it works.

 

Check your answer here: http://m.wolframalpha.com/input/?i=factorize+x%5E3%2Bx%5E2%2B2x%2B2&x=0&y=0

 

 Dec 5, 2014
 #2
avatar+26396 
+5
Best Answer

x^3+x^2+2x+2 factor by grouping so it ends up with two binomials.

Formula:$a+ax+x2+x3=(1+x)(a+x2)$Example: $$a=22+2x+x2+x3=(1+x)(2+x2)a=11+1x+x2+x3=(1+x)(1+x2)$

heureka Dec 5, 2014
 #3
avatar+118703 
0

This factorization could be handy to remember.  Thanks Heureka.

 Dec 5, 2014

1 Online Users

avatar