what will be the value of Sin2(6)-sin2(12)+sin2(18)... till 15th term , angles are in degree.
what will be the value of Sin2(6)-sin2(12)+sin2(18)... till 15th term , angles are in degree.
Sin2(6)−sin2(12)+sin2(18)+.......+sin2(6∗15)=Sin2(6)−sin2(12)+sin2(18)+...+sin2(42)−sin2(90−42)....+sin2(90−12)−sin2(90−6)+sin2(90)
Before I go any further can you please assure me that you middle term is meant to have a minus sign in front of it. :)
what will be the value of Sin2(6)-sin2(12)+sin2(18)... till 15th term , angles are in degree.
sin2(6∘)−sin2(12∘)+sin2(18∘)−sin2(24∘)+sin2(30∘)−sin2(36∘)+sin2(42∘)−sin2(48∘)+sin2(54∘)−sin2(60∘)+sin2(66∘)−sin2(72∘)+sin2(78∘)−sin2(84∘)+sin2(90∘)=sin2(6∘)−sin2(12∘)+sin2(18∘)−sin2(24∘)+sin2(30∘)−sin2(36∘)+sin2(42∘)−sin2(90∘−42∘)+sin2(90∘−36∘)−sin2(90∘−30∘)+sin2(90∘−24∘)−sin2(90∘−18∘)+sin2(90∘−12∘)−sin2(90∘−6∘)+sin2(90∘)=sin2(6∘)−sin2(12∘)+sin2(18∘)−sin2(24∘)+sin2(30∘)−sin2(36∘)+sin2(42∘)−cos2(42∘)+cos2(36∘)−cos2(30∘)+cos2(24∘)−cos2(18∘)+cos2(12∘)−cos2(6∘)+sin2(90∘)=sin2(6∘)−cos2(6∘)−sin2(12∘)+cos2(12∘)+sin2(18∘)−cos2(18∘)−sin2(24∘)+cos2(24∘)+sin2(30∘)−cos2(30∘)−sin2(36∘)+cos2(36∘)+sin2(42∘)−cos2(42∘)+sin2(90∘) cos(2φ)=cos2(φ)−sin2φ−cos(2φ)=sin2(φ)−cos2φ=−cos(12∘)+cos(24∘)−cos(36∘)+cos(48∘)−cos(60∘)+cos(72∘)−cos(84∘)+sin2(90∘)|sin2(90∘)=12=1=1−cos(12∘)+cos(24∘)−cos(36∘)+cos(48∘)−cos2(60∘)+cos(72∘)−cos(84∘)=1−cos(12∘)+cos(24∘)−cos(60∘−24∘)+cos(60∘−12∘)−cos(60∘)+cos(60∘+12∘)−cos(60∘+24∘)=1−cos(60∘)−cos(12∘)+cos(24∘)−cos(60∘−24∘)−cos(60∘+24∘)+cos(60∘−12∘)+cos(60∘+12∘) cos(α+β)+cos(α−β)=cos(α)cos(β)−sin(α)sin(β)+cos(α)cos(β)+sin(α)sin(β)=2cos(α)cos(β)=1−cos(60∘)−cos(12∘)+cos(24∘)−[cos(60∘−24∘)+cos(60∘+24∘)]+[cos(60∘−12∘)+cos(60∘+12∘)]=1−cos(60∘)−cos(12∘)+cos(24∘)−2⋅cos(60∘)cos(24∘)+2⋅cos(60∘)cos(12∘) cos(60∘)=12=1−12−cos(12∘)+cos(24∘)−2⋅12cos(24∘)+2⋅12cos(12∘)=12−cos(12∘)+cos(24∘)−cos(24∘)+cos(12∘)=12−cos(12∘)+cos(12∘)+cos(24∘)−cos(24∘)=12