Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
975
3
avatar+271 

How do I find out what

i 

is?

 Nov 25, 2016
edited by Pyramid  Nov 25, 2016
edited by Pyramid  Nov 25, 2016
 #1
avatar+118707 
0

How do I find out what

 

 

 

i0.5=(0+1i)0.5=[eπ2i]0.5=eπ4i=cosπ4+isinπ4=12+i2=1+i2

 Nov 25, 2016
 #2
avatar+26397 
+1

How do I find out what

i

is?

 

z=i= ?z=i

 

Formula:z=a+ib|z|=a2+b2|z|= magnitude of z z=0+i1|z|=02+12a=0b=1=1=1φ=arctan(ba)φ=arctan(10)φ=π2

 

r=z=i=|z|(cos(φ2)+isin(φ2))=1(cos(φ2)+isin(φ2))=1(cos(φ2)+isin(φ2))=cos(π22)+isin(π22)=cos(π4)+isin(π4)=22+i22r1=i=22+i22r2=r1r2=i=22i22

 

The square root has two solutions!

 

Here is my formula without compute  angle φ :

It doesn't work if a0b=0 .

Then you can use the normal a.

r1=z=12(b|z|a+i|z|a);r2=r1|z=a+ib|z|=a2+b2

 

 

z=iz=0+i1|z|=02+12=1a=0b=1r1=i=12(110+i10)=i=12(11+i1)r1=i=12(1+i)r2=r1r2=i=12(1+i)

 

Because 12=22 we have the same solutions, see above.

 

laugh

 Nov 25, 2016
edited by heureka  Nov 25, 2016
edited by heureka  Nov 25, 2016
 #3
avatar
0

Simplify the following:
sqrt(i)

i = 1/2 + i - 1/2 = (1 + 2 i - 1)/2 = (1 + 2 i + i^2)/2 = (1 + i)^2/2:
 sqrt((1 + i)^2/2 )

sqrt(1/2 (1 + i)^2) = (sqrt((1 + i)^2))/(sqrt(2)):
(sqrt((1 + i)^2))/(sqrt(2))

Cancel exponents. sqrt((1 + i)^2) = 1 + i:
1 + i/sqrt(2)

Rationalize the denominator. (1 + i)/sqrt(2) = (1 + i)/sqrt(2)×(sqrt(2))/(sqrt(2)) = ((1 + i) sqrt(2))/(2):
Answer: |((1 + i) sqrt(2))/(2)

 Nov 25, 2016

0 Online Users