How do I find out what
i0.5=(0+1i)0.5=[eπ2i]0.5=eπ4i=cosπ4+isinπ4=1√2+i√2=1+i√2
How do I find out what
√i
is?
√z=√i= ?z=i
Formula:z=a+i⋅b|z|=√a2+b2|z|= magnitude of z z=0+i⋅1|z|=√02+12a=0b=1=√1=1φ=arctan(ba)φ=arctan(10)⇒φ=π2
r=√z=√i=√|z|⋅(cos(φ2)+i⋅sin(φ2))=√1⋅(cos(φ2)+i⋅sin(φ2))=1⋅(cos(φ2)+i⋅sin(φ2))=cos(π22)+i⋅sin(π22)=cos(π4)+i⋅sin(π4)=√22+i⋅√22r1=√i=√22+i⋅√22r2=−r1r2=√i=−√22−i⋅√22
The square root has two solutions!
Here is my formula without compute angle φ :
It doesn't work if a≥0∧b=0 .
Then you can use the normal √a.
r1=√z=1√2⋅(b√|z|−a+i⋅√|z|−a);r2=−r1|z=a+i⋅b|z|=√a2+b2
z=iz=0+i⋅1|z|=√02+12=1a=0b=1r1=√i=1√2⋅(1√1−0+i⋅√1−0)=√i=1√2⋅(11+i⋅1)r1=√i=1√2⋅(1+i)r2=−r1r2=√i=−1√2⋅(1+i)
Because 1√2=√22 we have the same solutions, see above.
Simplify the following:
sqrt(i)
i = 1/2 + i - 1/2 = (1 + 2 i - 1)/2 = (1 + 2 i + i^2)/2 = (1 + i)^2/2:
sqrt((1 + i)^2/2 )
sqrt(1/2 (1 + i)^2) = (sqrt((1 + i)^2))/(sqrt(2)):
(sqrt((1 + i)^2))/(sqrt(2))
Cancel exponents. sqrt((1 + i)^2) = 1 + i:
1 + i/sqrt(2)
Rationalize the denominator. (1 + i)/sqrt(2) = (1 + i)/sqrt(2)×(sqrt(2))/(sqrt(2)) = ((1 + i) sqrt(2))/(2):
Answer: |((1 + i) sqrt(2))/(2)