What is the general form of the equation of a circle with its center at (-2, 1) and passing through (-4, 1)?
center at (xc=−2, yc=1)
passing through point at (xp=−4, yp=1)
radius2=r2=(xc−xp)2+(yc−yp)2
general form of the equation of a circle: (x−xc)2+(y−yc)2=r2
so we have:
(x−xc)2+(y−yc)2=r2|r2=(xc−xp)2+(yc−yp)2(x−xc)2+(y−yc)2=(xc−xp)2+(yc−yp)2x2−2xc⋅x+⧸x2c+y2−2yc⋅y+⧸y2c=⧸x2c−2xcxp+x2p+⧸y2c−2ycyp+y2px2−2xc⋅x+y2−2yc⋅y=−2xcxp+x2p+−2ycyp+y2px2−2xc⋅x+y2−2yc⋅y+2xcxp−x2p+2ycyp−y2p=0x2+y2−2xc⋅x−2yc⋅y+2xcxp+2ycyp−x2p−y2p=0x2+y2−2xc⋅x−2yc⋅y+xp⋅(2xc−xp)+yp⋅(2yc−yp)=0
The general form of the equation of a circle with its center (xc,yc)and passing through point (xp,yp) is:
x2+y2−2xc⋅x−2yc⋅y+xp⋅(2xc−xp)+yp⋅(2yc−yp)=0
xc=−2, yc=1xp=−4, yp=1x2+y2−2xc⋅x−2yc⋅y+xp⋅(2xc−xp)+yp⋅(2yc−yp)=0x2+y2−2⋅(−2)⋅x−2⋅1⋅y+(−4)⋅[2⋅(−2)−(−4)]+1⋅(2⋅1−1)=0x2+y2+4x−2y+(−4)⋅(−4+4)+1⋅(2−1)=0x2+y2+4x−2y+0+1⋅1=0x2+y2+4x−2y+1=0
The equation of the circle is x2+y2+4x−2y+1=0
What is the general form of the equation of a circle with its center at (-2, 1) and passing through (-4, 1)?
center at (xc=−2, yc=1)
passing through point at (xp=−4, yp=1)
radius2=r2=(xc−xp)2+(yc−yp)2
general form of the equation of a circle: (x−xc)2+(y−yc)2=r2
so we have:
(x−xc)2+(y−yc)2=r2|r2=(xc−xp)2+(yc−yp)2(x−xc)2+(y−yc)2=(xc−xp)2+(yc−yp)2x2−2xc⋅x+⧸x2c+y2−2yc⋅y+⧸y2c=⧸x2c−2xcxp+x2p+⧸y2c−2ycyp+y2px2−2xc⋅x+y2−2yc⋅y=−2xcxp+x2p+−2ycyp+y2px2−2xc⋅x+y2−2yc⋅y+2xcxp−x2p+2ycyp−y2p=0x2+y2−2xc⋅x−2yc⋅y+2xcxp+2ycyp−x2p−y2p=0x2+y2−2xc⋅x−2yc⋅y+xp⋅(2xc−xp)+yp⋅(2yc−yp)=0
The general form of the equation of a circle with its center (xc,yc)and passing through point (xp,yp) is:
x2+y2−2xc⋅x−2yc⋅y+xp⋅(2xc−xp)+yp⋅(2yc−yp)=0
xc=−2, yc=1xp=−4, yp=1x2+y2−2xc⋅x−2yc⋅y+xp⋅(2xc−xp)+yp⋅(2yc−yp)=0x2+y2−2⋅(−2)⋅x−2⋅1⋅y+(−4)⋅[2⋅(−2)−(−4)]+1⋅(2⋅1−1)=0x2+y2+4x−2y+(−4)⋅(−4+4)+1⋅(2−1)=0x2+y2+4x−2y+0+1⋅1=0x2+y2+4x−2y+1=0
The equation of the circle is x2+y2+4x−2y+1=0