+0  
 
0
976
1
avatar+1246 

The equations x3+5x2+px+q=0 and x3+7x2+px+r=0 have two roots in common. If the third root of each equation is represented by x1 and x2 respectively, compute the ordered pair (x1,x2).

 Jun 4, 2019

Best Answer 

 #1
avatar+26399 
+2

Vieta's Formula
The equations  x3+5x2+px+q=0 and x3+7x2+px+r=0 have two roots in common.
If the third root of each equation is represented by x1 and x2 respectively,
compute the ordered pair (x1,x2).

 

x3+5x2+px+q=0,  the roots are  x1,x3,x4.x3+7x2+px+r=0,  the roots are  x2,x3,x4.

 

5=(x1+x3+x4)5+x1=(x3+x4)7=(x2+x3+x4)7+x2=(x3+x4)5+x1=7+x2x1x2=2

 

x1x3+x1x4+x3x4=p=x2x3+x2x4+x3x4x1x3+x1x4=x2x3+x2x4x1(x3+x4)x2(x3+x4)=0(x3+x4)(x1x2)=0|x1x2=2(x3+x4)2=0|:2x3+x4=0x3=x4

 

5=(x1+x3+x4)|x3=x45=(x1x4+x4)5=x1x1=57=(x2+x3+x4)|x3=x47=(x2x4+x4)7=x2x2=7

 

(x1, x2)=(5, 7)

 

laugh

 Jun 4, 2019
 #1
avatar+26399 
+2
Best Answer

Vieta's Formula
The equations  x3+5x2+px+q=0 and x3+7x2+px+r=0 have two roots in common.
If the third root of each equation is represented by x1 and x2 respectively,
compute the ordered pair (x1,x2).

 

x3+5x2+px+q=0,  the roots are  x1,x3,x4.x3+7x2+px+r=0,  the roots are  x2,x3,x4.

 

5=(x1+x3+x4)5+x1=(x3+x4)7=(x2+x3+x4)7+x2=(x3+x4)5+x1=7+x2x1x2=2

 

x1x3+x1x4+x3x4=p=x2x3+x2x4+x3x4x1x3+x1x4=x2x3+x2x4x1(x3+x4)x2(x3+x4)=0(x3+x4)(x1x2)=0|x1x2=2(x3+x4)2=0|:2x3+x4=0x3=x4

 

5=(x1+x3+x4)|x3=x45=(x1x4+x4)5=x1x1=57=(x2+x3+x4)|x3=x47=(x2x4+x4)7=x2x2=7

 

(x1, x2)=(5, 7)

 

laugh

heureka Jun 4, 2019

0 Online Users