For positive real numbers x and y, the equation arctanx+arccosy√1+y2=arcsin3√10reduces to an equation of the form xy+ax+by+c=0.Enter the ordered triple (a,b,c).
For positive real numbers and the equation
arctanx+arccosy√1+y2=arcsin3√10
reduces to an equation of the form xy+ax+by+c=0.
My attempt:
arctanx+arccosy√1+y2=arcsin3√10|tan() both sidestan(arctanx+arccosy√1+y2)=tan(arcsin3√10)sin(arctanx+arccosy√1+y2)cos(arctanx+arccosy√1+y2)=sin(arcsin3√10)cos(arcsin3√10)sin(arctanx)cos(arccosy√1+y2)+cos(arctanx)sin(arccosy√1+y2)cos(arctanx)cos(arccosy√1+y2)−sin(arctanx)sin(arccosy√1+y2)=sin(arcsin3√10)cos(arcsin3√10)sin(arctanx)y√1+y2+cos(arctanx)sin(arccosy√1+y2)cos(arctanx)y√1+y2−sin(arctanx)sin(arccosy√1+y2)=3√10cos(arcsin3√10)sin(arctanx)=x√1+x2cos(arctanx)=1√1+x2x√1+x2y√1+y2+1√1+x2sin(arccosy√1+y2)1√1+x2y√1+y2−x√1+x2sin(arccosy√1+y2)=3√10cos(arcsin3√10)sin(arccosz)=√1−z2cos(arcsinz)=√1−z2x√1+x2y√1+y2+1√1+x2√1−y21+y21√1+x2y√1+y2−x√1+x2√1−y21+y2=3√10√1−910x√1+x2y√1+y2+1√1+x21√1+y21√1+x2y√1+y2−x√1+x21√1+y2=3√101√10xy+1y−x=3xy+1=3(y−x)xy−3(y−x)+1=0xy+3x−3y+1=0a=3b=−3c=1