Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
518
3
avatar

For positive real numbers x and y, the equation arctanx+arccosy1+y2=arcsin310reduces to an equation of the form xy+ax+by+c=0.Enter the ordered triple (a,b,c).

 Jul 12, 2021
 #1
avatar
0

(a,b,c) = (4,-2,-1).

 Jul 13, 2021
 #2
avatar+26396 
+4

For positive real numbers and the equation
arctanx+arccosy1+y2=arcsin310
reduces to an equation of the form xy+ax+by+c=0.

 

My attempt:

arctanx+arccosy1+y2=arcsin310|tan() both sidestan(arctanx+arccosy1+y2)=tan(arcsin310)sin(arctanx+arccosy1+y2)cos(arctanx+arccosy1+y2)=sin(arcsin310)cos(arcsin310)sin(arctanx)cos(arccosy1+y2)+cos(arctanx)sin(arccosy1+y2)cos(arctanx)cos(arccosy1+y2)sin(arctanx)sin(arccosy1+y2)=sin(arcsin310)cos(arcsin310)sin(arctanx)y1+y2+cos(arctanx)sin(arccosy1+y2)cos(arctanx)y1+y2sin(arctanx)sin(arccosy1+y2)=310cos(arcsin310)sin(arctanx)=x1+x2cos(arctanx)=11+x2x1+x2y1+y2+11+x2sin(arccosy1+y2)11+x2y1+y2x1+x2sin(arccosy1+y2)=310cos(arcsin310)sin(arccosz)=1z2cos(arcsinz)=1z2x1+x2y1+y2+11+x21y21+y211+x2y1+y2x1+x21y21+y2=3101910x1+x2y1+y2+11+x211+y211+x2y1+y2x1+x211+y2=310110xy+1yx=3xy+1=3(yx)xy3(yx)+1=0xy+3x3y+1=0a=3b=3c=1

 

laugh

 Jul 13, 2021
 #3
avatar+137 
0

WHOA LOOK AT THIS DETAILED SOLUTION

HighSchoolDx  Jul 13, 2021

2 Online Users