Processing math: 100%
 
+0  
 
0
8965
2
avatar

Decompose v into two vectors v1 and v2, where v1 is parallel to w and v2 is orthogonal to w.

v = i - j, w = i + 2j

 Mar 18, 2017
 #1
avatar+130477 
0

v =  < 1, - 1 >

w = < 1, 2  >

 

v1   = [ v (dot) w  ] / l w l^2  *  < w >

 

v(dot) w   =   1* 1 + 2* -1   =  1 - 2    =   -1

 

l w l  =  sqrt (1^2 + 5^2)   =  sqrt (5)           l w l ^2   = 5

 

So......

 

v1   =   -1 /  (5)  *  <1,  2 >     =   < -1/5, -2/ 5  >

 

v2  =  v - v1  =  < 1 - -1/5, -1 - - 2/5 >  =  < 1 + 1/5, -1 + 2/5 > =   < 6/5,-3/5 >

 

 

Check

Sum of v1 and v2    =  < -1/5 + 6/5, -2/5 + - 3/5 >   =  < 1  -1 >    = v

 

 

cool cool cool

 Mar 19, 2017
 #2
avatar+26397 
0

Decompose v into two vectors v1 and v2,

where v1 is parallel to w and v2 is orthogonal to w.

v = i - j, w = i + 2j

 

v=(11)w=(12)

v1=λwv2=μwv=v1+v2=λw+μwv=λw+μw|wvw=λww+μww|ww=0ww=w2=12+22=5vw=λw2+0vw=λw2|:w2λ=vww2v1=(vww2)wv2=vv1

 

v1=(vww2)w=((11)(12)5)(12)=(125)(12)=(15)(12)v1=(0.20.4)v2=(11)v1=(11)(0.20.4)=(11)+(0.20.4)=(1+0.21+0.4)v2=(1.20.6)

 

laugh

 Mar 20, 2017

0 Online Users