Decompose v into two vectors v1 and v2, where v1 is parallel to w and v2 is orthogonal to w.
v = i - j, w = i + 2j
v = < 1, - 1 >
w = < 1, 2 >
v1 = [ v (dot) w ] / l w l^2 * < w >
v(dot) w = 1* 1 + 2* -1 = 1 - 2 = -1
l w l = sqrt (1^2 + 5^2) = sqrt (5) l w l ^2 = 5
So......
v1 = -1 / (5) * <1, 2 > = < -1/5, -2/ 5 >
v2 = v - v1 = < 1 - -1/5, -1 - - 2/5 > = < 1 + 1/5, -1 + 2/5 > = < 6/5,-3/5 >
Check
Sum of v1 and v2 = < -1/5 + 6/5, -2/5 + - 3/5 > = < 1 -1 > = v
Decompose v into two vectors v1 and v2,
where v1 is parallel to w and v2 is orthogonal to w.
v = i - j, w = i + 2j
→v=(1−1)→w=(12)
→v1=λ⋅→w→v2=μ⋅→w⊥→v=→v1+→v2=λ⋅→w+μ⋅→w⊥→v=λ⋅→w+μ⋅→w⊥|⋅→w→v⋅→w=λ⋅→w⋅→w+μ⋅→w⊥⋅→w|→w⊥⋅→w=0→w⋅→w=w2=12+22=5→v⋅→w=λ⋅w2+0→v⋅→w=λ⋅w2|:w2λ=→v⋅→ww2→v1=(→v⋅→ww2)⋅→w→v2=→v−→v1
→v1=(→v⋅→ww2)⋅→w=((1−1)⋅(12)5)⋅(12)=(1−25)⋅(12)=(−15)⋅(12)→v1=(−0.2−0.4)→v2=(1−1)−→v1=(1−1)−(−0.2−0.4)=(1−1)+(0.20.4)=(1+0.2−1+0.4)→v2=(1.2−0.6)