Um, hi. Small problem here. Make U the subject in:S= U*V / U + V (this being a fraction). Thanks.
Make U the subject in:S= U*V / U + V (this being a fraction).
\small{\text{$ S= \dfrac{ U\cdot V } { U + V } $}}\\\\ \small{\text{$ \dfrac{1}{S}= \dfrac{ U + V } { U\cdot V } $}}\\\\ \small{\text{$ \dfrac{1}{S}= \dfrac{ U } { U\cdot V } + \dfrac{ V } { U\cdot V } $}}\\\\ \boxed{\small{\text{$ \dfrac{1}{S}= \dfrac{ 1 } { V } + \dfrac{ 1 } { U } $}}}\\\\ \small{\text{$ \dfrac{1}{U}= \dfrac{ 1 } { S } - \dfrac{ 1 } { V } $}}\\\\ \small{\text{$ \dfrac{1}{U}= \dfrac{ V-S } { V\cdot S } $}}\\\\ \boxed{ \small{\text{$ U= \dfrac{ V\cdot S } { V-S } $}}}
S=U×VU+V
Multiply both sides by U + V:
S×(U+V)=U×V
Expand the left-hand side:
S×U+S×V=U×V
Subtract U*V and S*V from both sides:
S×U−U×V=−S×V
Factor out U on the left-hand side:
U×(S−V)=−S×V
Divide both sides by S - V:
U=−S×VS−V
.
.Make U the subject in:S= U*V / U + V (this being a fraction).
\small{\text{$ S= \dfrac{ U\cdot V } { U + V } $}}\\\\ \small{\text{$ \dfrac{1}{S}= \dfrac{ U + V } { U\cdot V } $}}\\\\ \small{\text{$ \dfrac{1}{S}= \dfrac{ U } { U\cdot V } + \dfrac{ V } { U\cdot V } $}}\\\\ \boxed{\small{\text{$ \dfrac{1}{S}= \dfrac{ 1 } { V } + \dfrac{ 1 } { U } $}}}\\\\ \small{\text{$ \dfrac{1}{U}= \dfrac{ 1 } { S } - \dfrac{ 1 } { V } $}}\\\\ \small{\text{$ \dfrac{1}{U}= \dfrac{ V-S } { V\cdot S } $}}\\\\ \boxed{ \small{\text{$ U= \dfrac{ V\cdot S } { V-S } $}}}