Two airplanes are spotted on a radar map located at the coordinates (2√2 , - √5 ) and (3√2 , 5√5 ). Determine the distance the airplanes are apart using a calculator to state your answer in decimal form to the nearest hundreds. Assume the coordinates are given so that the distance is in units of miles.
Two airplanes are spotted on a radar map located at the coordinates (2√2 , - √5 ) and (3√2 , 5√5 ). Determine the distance the airplanes are apart using a calculator to state your answer in decimal form to the nearest hundreds. Assume the coordinates are given so that the distance is in units of miles
(x1y1)=(2√2−√5)(x2y2)=(3√25√5)
\boxed{\rm{distance}~&=& \sqrt { (x_2-x_1)^2 + (y_2-y_1)^2 }}\\\\ \small{\text{$ \begin{array}{rcl} \rm{distance}~&=& \sqrt { ( 3\sqrt{2} - 2\sqrt{2})^2 + [ 5\sqrt{5} - (-\sqrt{5}) ]^2 } \\\\ \rm{distance}~&=& \sqrt { ( 3\sqrt{2} - 2\sqrt{2})^2 + [ 5\sqrt{5} + \sqrt{5} ]^2 } \\\\ \rm{distance}~&=& \sqrt { (\sqrt{2})^2 + ( 6\sqrt{5} )^2 } \\\\ \rm{distance}~&=& \sqrt { 2 + 36\cdot 5 } \\\\ \rm{distance}~&=& \sqrt { 182} \\\\ \rm{distance}~&=& 13.4907375632 \\\\ \rm{distance}~&\approx& 13.49 ~\rm{miles} \end{array} $}}
Two airplanes are spotted on a radar map located at the coordinates (2√2 , - √5 ) and (3√2 , 5√5 ). Determine the distance the airplanes are apart using a calculator to state your answer in decimal form to the nearest hundreds. Assume the coordinates are given so that the distance is in units of miles
(x1y1)=(2√2−√5)(x2y2)=(3√25√5)
\boxed{\rm{distance}~&=& \sqrt { (x_2-x_1)^2 + (y_2-y_1)^2 }}\\\\ \small{\text{$ \begin{array}{rcl} \rm{distance}~&=& \sqrt { ( 3\sqrt{2} - 2\sqrt{2})^2 + [ 5\sqrt{5} - (-\sqrt{5}) ]^2 } \\\\ \rm{distance}~&=& \sqrt { ( 3\sqrt{2} - 2\sqrt{2})^2 + [ 5\sqrt{5} + \sqrt{5} ]^2 } \\\\ \rm{distance}~&=& \sqrt { (\sqrt{2})^2 + ( 6\sqrt{5} )^2 } \\\\ \rm{distance}~&=& \sqrt { 2 + 36\cdot 5 } \\\\ \rm{distance}~&=& \sqrt { 182} \\\\ \rm{distance}~&=& 13.4907375632 \\\\ \rm{distance}~&\approx& 13.49 ~\rm{miles} \end{array} $}}