Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
1063
3
avatar+40 

Line AB, CB, and DA are the same lengths. Angles 1 and 2 are the same.The angle of A is 120o . The area of polygon ABCD is 60. What is the area of the triangle ABD?

 Mar 13, 2017

Best Answer 

 #1
avatar+26396 
+15

Line AB, CB, and DA are the same lengths. Angles 1 and 2 are the same.The angle of A is 120o .

The area of polygon ABCD is 60.

What is the area of the triangle ABD?

 

Let angles 1 and 2 are φ

Let AB, CB, and DA = a

 

1. DB= ?

DB2=a2+a22aacos(120)DB2=2a2[ 1cos(120) ]|cos(120)=cos(18060)=cos(60)DB2=2a2[ 1+cos(60) ]|cos(60)=12DB2=2a2( 1+12 )DB2=2a2( 32 )DB2=3a2DB=a3

 

2. φ= ?

sin(φ)a=sin(120)DBsin(φ)a=sin(120)a3sin(φ)=sin(120)3|sin(120)=sin(18060)=sin(60)sin(φ)=sin(60)3|sin(60)=32sin(φ)=323sin(φ)=12φ=30

 

3. Angle C= ?

sin(C)DB=sin30a|sin(30)=12sin(C)a3=12asin(C)=32C=60

 

So angle CBD is 90 and triangle CBD is a right angular triangle.

 

4. The area of triangle CBD:

ACBD=aDB2=aa32ACBD=a232

 

5. The area of triangle ABD:

AABD=DBasin(φ)2=a3a122AABD=a234ora2=4AABD3a2=4AABD3

 

The area of polygon ABCD AABCD=60

AABCD=AABD+ACBD|ACBD=a232AABCD=6060=AABD+a232|a2=4AABD360=AABD+4AABD33260=AABD+2AABD60=3AABD20=AABDAABD=20

 

The area of the triangle ABD is 20

 

laugh

 Mar 13, 2017
 #1
avatar+26396 
+15
Best Answer

Line AB, CB, and DA are the same lengths. Angles 1 and 2 are the same.The angle of A is 120o .

The area of polygon ABCD is 60.

What is the area of the triangle ABD?

 

Let angles 1 and 2 are φ

Let AB, CB, and DA = a

 

1. DB= ?

DB2=a2+a22aacos(120)DB2=2a2[ 1cos(120) ]|cos(120)=cos(18060)=cos(60)DB2=2a2[ 1+cos(60) ]|cos(60)=12DB2=2a2( 1+12 )DB2=2a2( 32 )DB2=3a2DB=a3

 

2. φ= ?

sin(φ)a=sin(120)DBsin(φ)a=sin(120)a3sin(φ)=sin(120)3|sin(120)=sin(18060)=sin(60)sin(φ)=sin(60)3|sin(60)=32sin(φ)=323sin(φ)=12φ=30

 

3. Angle C= ?

sin(C)DB=sin30a|sin(30)=12sin(C)a3=12asin(C)=32C=60

 

So angle CBD is 90 and triangle CBD is a right angular triangle.

 

4. The area of triangle CBD:

ACBD=aDB2=aa32ACBD=a232

 

5. The area of triangle ABD:

AABD=DBasin(φ)2=a3a122AABD=a234ora2=4AABD3a2=4AABD3

 

The area of polygon ABCD AABCD=60

AABCD=AABD+ACBD|ACBD=a232AABCD=6060=AABD+a232|a2=4AABD360=AABD+4AABD33260=AABD+2AABD60=3AABD20=AABDAABD=20

 

The area of the triangle ABD is 20

 

laugh

heureka Mar 13, 2017
 #2
avatar+118702 
+5


AreaABCD=2ABD+BCE=2(0.5x2sin120)+0.5x2sin60=2(0.5x2sin60)+(0.5x2sin60)=3(0.5x2sin60)=3areaofABD 60=3areaofABDAreaofABD=20u2

.
 Mar 13, 2017
 #3
avatar+130477 
+5

Like the way you did that one, Melody....!!!!

 

 

cool cool cool

 Mar 13, 2017

5 Online Users