Line AB, CB, and DA are the same lengths. Angles 1 and 2 are the same.The angle of A is 120o . The area of polygon ABCD is 60. What is the area of the triangle ABD?
Line AB, CB, and DA are the same lengths. Angles 1 and 2 are the same.The angle of A is 120o .
The area of polygon ABCD is 60.
What is the area of the triangle ABD?
Let angles 1 and 2 are φ
Let AB, CB, and DA = a
1. DB= ?
DB2=a2+a2−2⋅a⋅a⋅cos(120∘)DB2=2a2[ 1−cos(120∘) ]|cos(120∘)=cos(180∘−60∘)=−cos(60∘)DB2=2a2[ 1+cos(60∘) ]|cos(60∘)=12DB2=2a2( 1+12 )DB2=2a2( 32 )DB2=3a2DB=a⋅√3
2. φ= ?
sin(φ)a=sin(120∘)DBsin(φ)a=sin(120∘)a⋅√3sin(φ)=sin(120∘)√3|sin(120∘)=sin(180∘−60∘)=sin(60∘)sin(φ)=sin(60∘)√3|sin(60∘)=√32sin(φ)=√32√3sin(φ)=12φ=30∘
3. Angle C= ?
sin(C)DB=sin30∘a|sin(30∘)=12sin(C)a⋅√3=12asin(C)=√32C=60∘
So angle CBD is 90∘ and triangle CBD is a right angular triangle.
4. The area of triangle CBD:
ACBD=a⋅DB2=a⋅a⋅√32ACBD=a2√32
5. The area of triangle ABD:
AABD=DB⋅a⋅sin(φ)2=a⋅√3⋅a⋅122AABD=a2⋅√34ora2=4⋅AABD√3a2=4⋅AABD√3
The area of polygon ABCD AABCD=60
AABCD=AABD+ACBD|ACBD=a2√32AABCD=6060=AABD+a2√32|a2=4⋅AABD√360=AABD+4⋅AABD√3√3260=AABD+2⋅AABD60=3⋅AABD20=AABDAABD=20
The area of the triangle ABD is 20
Line AB, CB, and DA are the same lengths. Angles 1 and 2 are the same.The angle of A is 120o .
The area of polygon ABCD is 60.
What is the area of the triangle ABD?
Let angles 1 and 2 are φ
Let AB, CB, and DA = a
1. DB= ?
DB2=a2+a2−2⋅a⋅a⋅cos(120∘)DB2=2a2[ 1−cos(120∘) ]|cos(120∘)=cos(180∘−60∘)=−cos(60∘)DB2=2a2[ 1+cos(60∘) ]|cos(60∘)=12DB2=2a2( 1+12 )DB2=2a2( 32 )DB2=3a2DB=a⋅√3
2. φ= ?
sin(φ)a=sin(120∘)DBsin(φ)a=sin(120∘)a⋅√3sin(φ)=sin(120∘)√3|sin(120∘)=sin(180∘−60∘)=sin(60∘)sin(φ)=sin(60∘)√3|sin(60∘)=√32sin(φ)=√32√3sin(φ)=12φ=30∘
3. Angle C= ?
sin(C)DB=sin30∘a|sin(30∘)=12sin(C)a⋅√3=12asin(C)=√32C=60∘
So angle CBD is 90∘ and triangle CBD is a right angular triangle.
4. The area of triangle CBD:
ACBD=a⋅DB2=a⋅a⋅√32ACBD=a2√32
5. The area of triangle ABD:
AABD=DB⋅a⋅sin(φ)2=a⋅√3⋅a⋅122AABD=a2⋅√34ora2=4⋅AABD√3a2=4⋅AABD√3
The area of polygon ABCD AABCD=60
AABCD=AABD+ACBD|ACBD=a2√32AABCD=6060=AABD+a2√32|a2=4⋅AABD√360=AABD+4⋅AABD√3√3260=AABD+2⋅AABD60=3⋅AABD20=AABDAABD=20
The area of the triangle ABD is 20