Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
610
1
avatar

The polynomial f(x) has degree 3. If f(-1)=15, f(0)=0, f(1)=5 and f(2)=12, then what are the x-intercepts of the graph of f?

 Nov 3, 2018

Best Answer 

 #1
avatar+6252 
+2

here may be some clever way to attack this but if so I'm not aware of itp(x)=ax3+bx2+cx+dusing the function values give we can form the equationsa+bc+d=15d=0a+b+c+d=58a+4b+2c+d=12I would dump these into a matrix and solve it like that(1111000111118421)(abcd)=(150512)

 

Solving this using the method of you choice  we find

 

a=3, b=10, c=2, d=0p(x)=3x3+10x22x

 

The x-intercepts occur where p(x)=0, factoring we get

 

p(x)=3x3+10x22x=x(3x210x+2)and this has zeros at x=0 andx=10±100246=13(5±19)

 Nov 4, 2018
edited by Rom  Nov 4, 2018
 #1
avatar+6252 
+2
Best Answer

here may be some clever way to attack this but if so I'm not aware of itp(x)=ax3+bx2+cx+dusing the function values give we can form the equationsa+bc+d=15d=0a+b+c+d=58a+4b+2c+d=12I would dump these into a matrix and solve it like that(1111000111118421)(abcd)=(150512)

 

Solving this using the method of you choice  we find

 

a=3, b=10, c=2, d=0p(x)=3x3+10x22x

 

The x-intercepts occur where p(x)=0, factoring we get

 

p(x)=3x3+10x22x=x(3x210x+2)and this has zeros at x=0 andx=10±100246=13(5±19)

Rom Nov 4, 2018
edited by Rom  Nov 4, 2018

1 Online Users