The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.
The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.
(1. Line): 3x+y=1y=−3⏟m1x+1⏟b1 (2. Line): 5x−y=15y=5⏟m2x−15⏟b2 Intersection: xintersection=−ΔbΔm=−b1−b2m1−m2 xintersection=−1−(−15)−3−5=−16−8=168=2yintersection=−3x+1yintersection=−3⋅2+1yintersection=−6+1yintersection=−5
Circle center (xc,yc):xc=xintersection=2yc=yintersection=−5 Circle radius r:r=xc=xintersection=2 Circle formula: (x−xc)2+(y−yc)2=r2(x−2)2+(y+5)2=22=4
3x+y=1 and 5x-y=15
Using the first equation, y = 1 - 3x ....and substituting this into the second, we have
5x - (1 - 3x) = 15
5x -1 + 3x = 15
8x - 1 = 15
8x = 16
x = 2 and y = (1 - 3x) = (1 - 3(2)) = (1 - 6) = -5
So the solution point is (2, -5)
And the equation of the circle would be.....
(x - 2)^2 + (y + 5)^2 = 4
Here's a graph.....https://www.desmos.com/calculator/pt2wwhqn4u
The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.
(1. Line): 3x+y=1y=−3⏟m1x+1⏟b1 (2. Line): 5x−y=15y=5⏟m2x−15⏟b2 Intersection: xintersection=−ΔbΔm=−b1−b2m1−m2 xintersection=−1−(−15)−3−5=−16−8=168=2yintersection=−3x+1yintersection=−3⋅2+1yintersection=−6+1yintersection=−5
Circle center (xc,yc):xc=xintersection=2yc=yintersection=−5 Circle radius r:r=xc=xintersection=2 Circle formula: (x−xc)2+(y−yc)2=r2(x−2)2+(y+5)2=22=4