Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1544
4
avatar

The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

 May 27, 2015

Best Answer 

 #2
avatar+26396 
+13

The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

 (1. Line): 3x+y=1y=3m1x+1b1 (2. Line): 5xy=15y=5m2x15b2 Intersection:  xintersection=ΔbΔm=b1b2m1m2 xintersection=1(15)35=168=168=2yintersection=3x+1yintersection=32+1yintersection=6+1yintersection=5

 Circle center (xc,yc):xc=xintersection=2yc=yintersection=5 Circle radius r:r=xc=xintersection=2 Circle formula: (xxc)2+(yyc)2=r2(x2)2+(y+5)2=22=4

 May 28, 2015
 #1
avatar+130466 
+10

3x+y=1 and 5x-y=15

 

Using the first equation, y = 1 - 3x    ....and substituting this into the second, we have

 

5x - (1 - 3x) = 15

 

5x -1 + 3x = 15

 

8x - 1  = 15

 

8x = 16

 

x = 2     and y = (1 - 3x) = (1 - 3(2))  = (1 - 6)  = -5

 

So the solution point is (2, -5)

 

And the equation of the circle would be.....

 

(x - 2)^2 + (y + 5)^2  = 4

 

Here's a graph.....https://www.desmos.com/calculator/pt2wwhqn4u

 

 

 

 May 27, 2015
 #2
avatar+26396 
+13
Best Answer

The lines 3x+y=1 and 5x-y=15 intersect at the center of circle O. If the circle is tangent to the y-axis, find the equation of the circle.

 (1. Line): 3x+y=1y=3m1x+1b1 (2. Line): 5xy=15y=5m2x15b2 Intersection:  xintersection=ΔbΔm=b1b2m1m2 xintersection=1(15)35=168=168=2yintersection=3x+1yintersection=32+1yintersection=6+1yintersection=5

 Circle center (xc,yc):xc=xintersection=2yc=yintersection=5 Circle radius r:r=xc=xintersection=2 Circle formula: (xxc)2+(yyc)2=r2(x2)2+(y+5)2=22=4

heureka May 28, 2015
 #3
avatar+4711 
0

The Latex is impeccable!

 May 28, 2015
 #4
avatar+118703 
0

Yes, Heureka is the master of LaTex.  His maths is not half bad either LOL  

Thanks Chris and Heureka  

 May 28, 2015

2 Online Users

avatar
avatar