The dotted diagonal AC (Fig. 42) has the length of twice the radius. Find the area of the emblem only.
Radius (r) = 1
The dotted diagonal AC (Fig. 42) has the length of twice the radius. Find the area of the emblem only.
Acircle=πr2Asquare=(r√2)2=2r2Agoblet=Acircle−Asquare4=πr2−2r24A=4⋅[Aquadrant−2⋅Agoblet−Atriangle]A=4⋅[πr24−2⋅(πr2−2r24)−(r√2−r)22]A=πr2−2⋅(πr2−2r2)−2⋅(r√2−r)2A=πr2−2πr2+4r2−2⋅(r√2−r)2A=πr2−2πr2+4r2−2⋅(2r2−2√2r2+r2)A=πr2−2πr2+4r2−4r2+4√2r2−2r2A=−πr2+4√2r2−2r2A=r2⋅(4√2−2−π)
The dotted diagonal AC (Fig. 42) has the length of twice the radius. Find the area of the emblem only.
Acircle=πr2Asquare=(r√2)2=2r2Agoblet=Acircle−Asquare4=πr2−2r24A=4⋅[Aquadrant−2⋅Agoblet−Atriangle]A=4⋅[πr24−2⋅(πr2−2r24)−(r√2−r)22]A=πr2−2⋅(πr2−2r2)−2⋅(r√2−r)2A=πr2−2πr2+4r2−2⋅(r√2−r)2A=πr2−2πr2+4r2−2⋅(2r2−2√2r2+r2)A=πr2−2πr2+4r2−4r2+4√2r2−2r2A=−πr2+4√2r2−2r2A=r2⋅(4√2−2−π)
The dotted diagonal AC (Fig. 42) has the length of twice the radius. Find the area of the emblem only.
Radius (r) = 1
AC = 2r r = 1
Area of the square is: (sqrt(2))2 = 2.000u2
Triangles: (lkC + oAf) = (sqrt(2) -1)2 = 0.171572875253809862u2
Half circle area is: r2pi/2 = 1.5707963267948966u2
(2.000u2 - 1.570796326794896u2 - 0.17157287525380986u2)*2= 0.515261595902587u2