Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1397
6
avatar+1693 

The dotted diagonal AC (Fig. 42)  has the length of twice the radius. Find the area of the emblem only.

Radius (r) = 1 

 

Image result for circle inscribed in a triangle

 May 15, 2015

Best Answer 

 #2
avatar+26396 
+15

The dotted diagonal AC (Fig. 42)  has the length of twice the radius. Find the area of the emblem only.

Image result for circle inscribed in a triangle

Acircle=πr2Asquare=(r2)2=2r2Agoblet=AcircleAsquare4=πr22r24A=4[Aquadrant2AgobletAtriangle]A=4[πr242(πr22r24)(r2r)22]A=πr22(πr22r2)2(r2r)2A=πr22πr2+4r22(r2r)2A=πr22πr2+4r22(2r222r2+r2)A=πr22πr2+4r24r2+42r22r2A=πr2+42r22r2A=r2(422π)

 May 15, 2015
 #1
avatar+130466 
+5

..............................................................

.
 May 15, 2015
 #2
avatar+26396 
+15
Best Answer

The dotted diagonal AC (Fig. 42)  has the length of twice the radius. Find the area of the emblem only.

Image result for circle inscribed in a triangle

Acircle=πr2Asquare=(r2)2=2r2Agoblet=AcircleAsquare4=πr22r24A=4[Aquadrant2AgobletAtriangle]A=4[πr242(πr22r24)(r2r)22]A=πr22(πr22r2)2(r2r)2A=πr22πr2+4r22(r2r)2A=πr22πr2+4r22(2r222r2+r2)A=πr22πr2+4r24r2+42r22r2A=πr2+42r22r2A=r2(422π)

heureka May 15, 2015
 #3
avatar+1693 
+5

The dotted diagonal AC (Fig. 42)  has the length of twice the radius. Find the area of the emblem only.

Radius (r) = 1 

Image result for circle inscribed in a triangle

 

AC = 2r       r = 1

 

Area of the square is:  (sqrt(2))2  = 2.000u2

 

Triangles:  (lkC + oAf) = (sqrt(2) -1)2 = 0.171572875253809862u2

 

Half circle area is:  r2pi/2 = 1.5707963267948966u2

 

(2.000u2 - 1.570796326794896u2 - 0.17157287525380986u2)*2= 0.515261595902587u2

 May 15, 2015
 #4
avatar+33654 
+5

You don't specify the value of the radius in the question civonamzuk, but if r = 1 then heureka's answer evaluates to the same as the one you give.

.

 May 15, 2015
 #5
avatar+1693 
+5

Heureka's answer is correct!

 May 15, 2015
 #6
avatar+33654 
+8

Really?  That's a new one on me!  (Forgive the pun!)

.

 May 15, 2015

2 Online Users

avatar