Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2
1505
2
avatar

(tan15∘)x(tan25∘)x(tan35∘)x(tan85∘)
I know the answer but I do not know the solution
answer: 1
help me pls 

 Mar 28, 2017
 #1
avatar+26396 
+1

(tan15∘)x(tan25∘)x(tan35∘)x(tan85∘)

 

Formula:

sin(x)sin(y)=12(cos(xy)cos(x+y))cos(x)cos(y)=12(cos(xy)+cos(x+y))sin(2x)=2sin(x)cos(x)

 

tan(15)tan(25)tan(35)tan(85)=sin(15)sin(25)sin(35)sin(85)cos(15)cos(25)cos(35)cos(85)=[sin(85)sin(15)][sin(35)sin(25)][cos(85)cos(15)][cos(35)cos(25)]sin(85)sin(15)=12(cos(8515)cos(85+15))sin(85)sin(15)=12(cos(70)cos(100))sin(35)sin(25)=12(cos(3525)cos(35+25))sin(35)sin(25)=12(cos(10)cos(60))cos(85)cos(15)=12(cos(8515)+cos(85+15))cos(85)cos(15)=12(cos(70)+cos(100))cos(35)cos(25)=12(cos(3525)+cos(35+25))cos(35)cos(25)=12(cos(10)+cos(60))=12(cos(70)cos(100))12(cos(10)cos(60))12(cos(70)+cos(100))12(cos(10)+cos(60))=(cos(70)cos(100))(cos(10)cos(60))(cos(70)+cos(100))(cos(10)+cos(60))|cos(100)=cos(90+10)=sin(10)=(cos(70)+sin(10))(cos(10)cos(60))(cos(70)sin(10))(cos(10)+cos(60))|cos(70)=cos(9020)=sin(20)=(sin(20)+sin(10))(cos(10)cos(60))(sin(20)sin(10))(cos(10)+cos(60))|cos(60)=12=(sin(20)+sin(10))(cos(10)12)(sin(20)sin(10))(cos(10)+12)=sin(20)cos(10)12sin(20)+sin(10)cos(10)12sin(10)sin(20)cos(10)+12sin(20)sin(10)cos(10)12sin(10)|sin(10)cos(10)=12sin(20)=sin(20)cos(10)12sin(20)+12sin(20)12sin(10)sin(20)cos(10)+12sin(20)12sin(20)12sin(10)|12sin(20)12sin(20)=0=sin(20)cos(10)+012sin(10)sin(20)cos(10)+012sin(10)=sin(20)cos(10)12sin(10)sin(20)cos(10)12sin(10)=1

 

laugh

 Mar 29, 2017
 #2
avatar+118703 
+1

Thanks Heureka :)

I have only just started working through this.

I am sure it is very clear and I will have no problem following it.

However, I would not have been able to put that string of logic together myself.  

Maybe as I work through it some light may come on for me,

I hope so  :))

Melody  Mar 29, 2017

2 Online Users

avatar
avatar