(tan x)^2 − tan x − 42 = 0
We substitute: z=tan(x)
So we have: z2−z−42=0
z1,2=1±√1−4⋅(−42)2⋅1=1±√1+1682=1±√1692=1±132 z1=1+132z2=1−132z1=142z2=−122z1=7z2=−6tan(x1)=z1=7tan(x2)=z2=−6x1=arctan(7)x2=arctan(−6)x1=81.8698976458\ensurement∘±k⋅180\ensurement∘x2=−80.5376777920\ensurement∘±k⋅180\ensurement∘
k= 0,1,2, ...
(tan x)^2 − tan x − 42 = 0
We substitute: z=tan(x)
So we have: z2−z−42=0
z1,2=1±√1−4⋅(−42)2⋅1=1±√1+1682=1±√1692=1±132 z1=1+132z2=1−132z1=142z2=−122z1=7z2=−6tan(x1)=z1=7tan(x2)=z2=−6x1=arctan(7)x2=arctan(−6)x1=81.8698976458\ensurement∘±k⋅180\ensurement∘x2=−80.5376777920\ensurement∘±k⋅180\ensurement∘
k= 0,1,2, ...