We can see that if we put in all of the odd terms, we get 299 , however, the odd terms are missing.
But, we see that for each even term (992x) there is a odd term (9999−2x) which is equal to it.
So, the sum is 298.
We can see that if we put in all of the odd terms, we get 299 , however, the odd terms are missing.
But, we see that for each even term (992x) there is a odd term (9999−2x) which is equal to it.
So, the sum is 298.
Find the value of the sum
(990)+(992)+(994)+⋯+(9996)+(9998).
Formula: (nk)=(nn−k)
(990)+(992)+(994)+⋯+(9996)+(9998)=(990)+(992)+(994)+⋯+(9948)+(9998)+(9996)+(9994)+⋯+(9950)=(990)+(992)+(994)+(996)+⋯+(9948)+(991)+(993)+(995)+(997)+⋯+(9949)=(990)+(991)+(992)+(993)+(994)+…+(9946)+(9947)+(9948)+(9949)=2992=298
Thanks Ilovepizza and Heureka,
Where does 2^99 come from? I understand everything else.
Where does 299 come from?
Pascal's triangle:
See the sum of the each line:
n0(00)=1=201(10)+(11)=1+1=212(20)+(21)+(22)=1+2+1=223(30)+(31)+(32)+(33)=1+3+3+1=234(40)+(41)+(42)+(43)+(44)=1+4+6+4+1=245(50)+(51)+(52)+(53)+(54)+(55)=1+5+10+10+5+1=25…99(990)+(991)+⋯+(9998)+(9999)=1+99+⋯+99+1=299
(1+1)n=n∑k=0(nk)=(n0)+(n1)+⋯+(nn−1)+(nn)=2n