Processing math: 100%
 
+0  
 
0
533
7
avatar

Find the value of the sum (990)+(992)+(994)++(9998).

 May 19, 2021

Best Answer 

 #1
avatar+178 
+2

We can see that if we put in all of the odd terms, we get 299 , however, the odd terms are missing. 

 

But, we see that for each even term (992x) there is a odd term (99992x) which is equal to it.

 

So, the sum is 298.

 May 19, 2021
 #1
avatar+178 
+2
Best Answer

We can see that if we put in all of the odd terms, we get 299 , however, the odd terms are missing. 

 

But, we see that for each even term (992x) there is a odd term (99992x) which is equal to it.

 

So, the sum is 298.

ilovepizza547 May 19, 2021
 #2
avatar+130493 
0

Very nice, Ilovepizza  !!!!

 

 

cool cool cool

CPhill  May 19, 2021
 #3
avatar+26398 
+2

Find the value of the sum
(990)+(992)+(994)++(9996)+(9998).

 

Formula: (nk)=(nnk)

 

(990)+(992)+(994)++(9996)+(9998)=(990)+(992)+(994)++(9948)+(9998)+(9996)+(9994)++(9950)=(990)+(992)+(994)+(996)++(9948)+(991)+(993)+(995)+(997)++(9949)=(990)+(991)+(992)+(993)+(994)++(9946)+(9947)+(9948)+(9949)=2992=298

 

laugh

 May 19, 2021
edited by heureka  May 19, 2021
 #4
avatar+130493 
+1

Thanks, heureka  !!!!

 

 

cool cool cool

CPhill  May 19, 2021
 #5
avatar+118710 
+1

Thanks Ilovepizza and Heureka,

 

Where does 2^99 come from?  I understand everything else. 

 May 19, 2021
 #6
avatar+26398 
+2

Where does 299 come from?

 

Pascal's triangle:


See the sum of the each line:
n0(00)=1=201(10)+(11)=1+1=212(20)+(21)+(22)=1+2+1=223(30)+(31)+(32)+(33)=1+3+3+1=234(40)+(41)+(42)+(43)+(44)=1+4+6+4+1=245(50)+(51)+(52)+(53)+(54)+(55)=1+5+10+10+5+1=2599(990)+(991)++(9998)+(9999)=1+99++99+1=299

 

(1+1)n=nk=0(nk)=(n0)+(n1)++(nn1)+(nn)=2n

 

laugh

 May 20, 2021
 #7
avatar+118710 
0

Thanks very much Heureka.   laugh cool laugh

 

Hopefully I will remember next time.  ://

Melody  May 20, 2021

3 Online Users

avatar
avatar