Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1714
1
avatar

I need understanding and help solving

 Jun 29, 2018

Best Answer 

 #1
avatar+9490 
+2

sin(x+11π6)sin(x11π6)=1

 

We can use the sum of angles formula for sine:

 

sin(α±β)=sinαcosβ±cosαsinβ  sin(x+11π6)=sinxcos11π6+cosxsin11π6=(sinx)(32)+(cosx)(12) sin(x11π6)=sinxcos11π6cosxsin11π6=(sinx)(32)(cosx)(12)

 

 

So if...

 

sin(x+11π6)sin(x11π6)=1 [(sinx)(32)+(cosx)(12)][(sinx)(32)(cosx)(12)]=1 (sinx)(32)+(cosx)(12)(sinx)(32)+(cosx)(12)=1 2(cosx)(12)=1 cosx=1 cosx=1 x=π+2πn, where  n  is an integer.      then...

 Jun 29, 2018
 #1
avatar+9490 
+2
Best Answer

sin(x+11π6)sin(x11π6)=1

 

We can use the sum of angles formula for sine:

 

sin(α±β)=sinαcosβ±cosαsinβ  sin(x+11π6)=sinxcos11π6+cosxsin11π6=(sinx)(32)+(cosx)(12) sin(x11π6)=sinxcos11π6cosxsin11π6=(sinx)(32)(cosx)(12)

 

 

So if...

 

sin(x+11π6)sin(x11π6)=1 [(sinx)(32)+(cosx)(12)][(sinx)(32)(cosx)(12)]=1 (sinx)(32)+(cosx)(12)(sinx)(32)+(cosx)(12)=1 2(cosx)(12)=1 cosx=1 cosx=1 x=π+2πn, where  n  is an integer.      then...

hectictar Jun 29, 2018

2 Online Users

avatar