sin(x+11π6)−sin(x−11π6)=1
We can use the sum of angles formula for sine:
sin(α±β)=sinαcosβ±cosαsinβ sin(x+11π6)=sinxcos11π6+cosxsin11π6=(sinx)(√32)+(cosx)(−12) sin(x−11π6)=sinxcos11π6−cosxsin11π6=(sinx)(√32)−(cosx)(−12)
So if...
sin(x+11π6)−sin(x−11π6)=1 [(sinx)(√32)+(cosx)(−12)]−[(sinx)(√32)−(cosx)(−12)]=1 (sinx)(√32)+(cosx)(−12)−(sinx)(√32)+(cosx)(−12)=1 2(cosx)(−12)=1 −cosx=1 cosx=−1 x=π+2πn, where n is an integer. then...
sin(x+11π6)−sin(x−11π6)=1
We can use the sum of angles formula for sine:
sin(α±β)=sinαcosβ±cosαsinβ sin(x+11π6)=sinxcos11π6+cosxsin11π6=(sinx)(√32)+(cosx)(−12) sin(x−11π6)=sinxcos11π6−cosxsin11π6=(sinx)(√32)−(cosx)(−12)
So if...
sin(x+11π6)−sin(x−11π6)=1 [(sinx)(√32)+(cosx)(−12)]−[(sinx)(√32)−(cosx)(−12)]=1 (sinx)(√32)+(cosx)(−12)−(sinx)(√32)+(cosx)(−12)=1 2(cosx)(−12)=1 −cosx=1 cosx=−1 x=π+2πn, where n is an integer. then...