Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1310
2
avatar+206 

Find the area between two concentric circles defined by 

x2 + y2 -2x + 4y + 1 = 0 

x2 + y2 -2x + 4y - 11 = 0 

 Apr 5, 2017
 #1
avatar+130466 
+3

Let's put these into standard form, first

 

x^2 + y^2 -2x + 4y + 1 = 0 

x^2 - 2x + y^2 + 2x =  -1       complete the square on x and y

x^2 - 2x + 1 + y^2 + 2x + 4  =  -1 + 1 + 4     factor

(x - 1)^2 + ( y + 2)^2  =  4

This is a circle centered at (1, -2) with a radius of 2

 

x^2 + y^2 -2x + 4y - 11 = 0

x^2 - 2x + y^2+ 4y = 11

x^2 - 2x + 1 + y^2 + 4y + 4  = 11 + 1 + 4

(x - 1)^2  + (y + 2)^2  = 16

This is  a circle with the same center and a radius of 4

 

The area between the concentric circles =

 

pi [ 4^2 - 2^2]   = pi [16 - 4 ]  =  12pi units^2  ≈  37.7 units^2

 

 

cool cool cool

 Apr 5, 2017
 #2
avatar+26396 
+3

Find the area between two concentric circles defined by 

 

Let xc the center of the circles in x

Let yc the center of the circles in y

 

x2+y22x+4y+1=x2c+y2cr21=0x2+y22x+4y11=x2c+y2cr22=0

 

(1)1=x2c+y2cr21(2)11=x2c+y2cr22(1)(2):1(11)=x2c+y2cr21(x2c+y2cr22)1+11=x2c+y2cr21x2cy2c+r2212=r21+r22r22r21=12

 

The area between two concentric circles:

A=πr22πr21=π(r22r21)|r22r21=12=π12=37.6991118431

 

 

laugh

 Apr 6, 2017

0 Online Users