Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1
3574
4
avatar

Observe the pattern: 2,5,8,14,... if the pattern continues, what is the 41st number?

 May 8, 2016

Best Answer 

 #4
avatar+33654 
+5

This pattern could also be represented by:

 

a(n) = (1/2)(n-1)^3 - (3/2)(n-1)^2 + 4(n-1) + 2

 

in which case a(41) = 29766

 

In general there are an infinite number of ways of representing these simple series!

 May 9, 2016
 #1
avatar
0

The equation to this sequence is 3N-1 

So then you just plugin 41 and you get 122 

 May 8, 2016
 #2
avatar+37165 
0

Hmmmm.... Guest 1,       '14' doesn't fit the  3n-1  solution....

 May 8, 2016
 #3
avatar+26396 
+5

Observe the pattern: 2,5,8,14,... if the pattern continues, what is the 41st number?

 

Primes of the form 4n-1 p3p1413a1=3314=227a2=3714=5311a3=31114=8419a4=31914=14523a5=32314=17631237433284735959441067501171531279591383621410377151078016127951713198181391041915111320163122211671252217913423191143241991492521115826223167272271702823917929251188302631973127120332283212333072303431123335331248363472603735926938367275393792844038328741419a41=341914=31442431323434393294444333245463347

 

laugh

 May 9, 2016
 #4
avatar+33654 
+5
Best Answer

This pattern could also be represented by:

 

a(n) = (1/2)(n-1)^3 - (3/2)(n-1)^2 + 4(n-1) + 2

 

in which case a(41) = 29766

 

In general there are an infinite number of ways of representing these simple series!

Alan May 9, 2016

2 Online Users