Define the sequence of positive integers a_n recursively by a_1=3 and a_n=3(a_n- 1) for all n> =2. Determine the last two digits of a_{2007}.
Define the sequence of positive integers an recursively by
a1=3 and an=3an−1 for all n≥2.
Determine the last two digits of a2007.
a1=3a2=3∗a1=3∗3=32a3=3∗a2=3∗32=33…a2007=32007
32007(mod100)Euler:3ϕ(100)≡1(mod100)ϕ100=100∗(1−12)∗(1−15)ϕ100=40340≡1(mod100)≡(340)50∗37(mod100)≡150∗37(mod100)≡37(mod100)≡2187(mod100)32007(mod100)≡87(mod100)