Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1004
3
avatar

sasha and maurice are lab partners in science class. Today they need to weigh liquids using a balance scale. They have a tray full of 80 weights that they can use. The weights are of four different kinds: 50 grams, 25 grams, 15 grams, and 5 grams. The first liquid weihts 85 grams. How many different combinations of weights will balance the scale for the first liquid?

 Jan 15, 2015

Best Answer 

 #3
avatar+26396 
+5

1.85g=4×15g+1×25g2.85g=1×5g+2×15g+1×50g3.85g=1×5g+2×15g+2×25g4.85g=2×5g+1×25g+1×50g5.85g=2×5g+3×25g6.85g=2×5g+5×15g7.85g=3×5g+3×15g+1×25g8.85g=4×5g+1×15g+1×50g9.85g=4×5g+1×15g+2×25g10.85g=5×5g+4×15g11.85g=6×5g+2×15g+1×25g12.85g=7×5g+1×50g13.85g=7×5g+2×25g14.85g=8×5g+3×15g15.85g=9×5g+1×15g+1×25g16.85g=11×5g+2×15g17.85g=12×5g+1×25g18.85g=14×5g+1×15g19.85g=17×5g

.
 Jan 15, 2015
 #1
avatar+23254 
+5

There are many possibilities (provided they have enough weights of each size). I'll let you figure out the number of 5 gram weights needed in each possibility:

50 gm     25 gm    15 gm     5 gm

   1             1                         ?

   1                           1           ?

   1                           2           ?

   1                                        ?

                   3                        ?

                   2                        ?

                   2           1            ?

                   1           1            ?

                   1           2            ?

                   1           3            ?

                   1           4            ?

                                1            ?

                                2            ?

                                3            ?

                                4            ?

                                5            ?

                                              ?

 Jan 15, 2015
 #2
avatar+130466 
+5

Assuming that we have 20 weights of each type

5 , 15,  25, 50

Here are all the combinations

(1 x 50) + (7 x 5)          (4 x 15) + (5 x 5)         (1 x 50) + (1 x 25) + (2 x 5)

(1 x 25) + (4 x 15)        (3 x 15) + (8 x 5)         (1 x 50) + (1 x 15) + (4 x 5)

(1 x 25) + (12 x 5)        (2 x 15) + (11 x 5)        (1 x 50) + (2 x 15) + (1 x 5)

(2 x 25) + (7 x 5)          (1 x 15) + (14 x 5)        (2 x 25) + (2 x 15) + (1 x 5)

(3 x 25) + (2 x 5)          (17 x 5)                        (2 x 25) + (1 x 15) + (4 x 5)

(5 x 15) + (2 x 5)                                              (1 x 25) + (3 x 15) + (3 x 5)

                                                                        (1 x 25) + (2 x 15) + (6 x 5)

                                                                        (1 x 25) + (1 x 15) + (9 x 5)

 

I think that's it.......   

 

 

                                       

 Jan 15, 2015
 #3
avatar+26396 
+5
Best Answer

1.85g=4×15g+1×25g2.85g=1×5g+2×15g+1×50g3.85g=1×5g+2×15g+2×25g4.85g=2×5g+1×25g+1×50g5.85g=2×5g+3×25g6.85g=2×5g+5×15g7.85g=3×5g+3×15g+1×25g8.85g=4×5g+1×15g+1×50g9.85g=4×5g+1×15g+2×25g10.85g=5×5g+4×15g11.85g=6×5g+2×15g+1×25g12.85g=7×5g+1×50g13.85g=7×5g+2×25g14.85g=8×5g+3×15g15.85g=9×5g+1×15g+1×25g16.85g=11×5g+2×15g17.85g=12×5g+1×25g18.85g=14×5g+1×15g19.85g=17×5g

heureka Jan 15, 2015

2 Online Users

avatar
avatar