Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2163
3
avatar

regular octagon ABCDEFGH has a side length of 2 cm. Find the area of square ACEG.

off-topic
 Aug 1, 2019
 #1
avatar+26397 
+3

Regular octagon ABCDEFGH has a side length of 2 cm.

Find the area of square ACEG.

 

 Let the side length of the square =s  Let the area of the square =s2  Let ABC=135135=1803608 

 

cosine formula:

s2=22+22222cos(135)s2=88cos(135)cos(135)=cos(18045)=cos(45)=22s2=88(22)s2=8+42s2=13.6568542495 cm2

 

The area of square ACEG is 13.7 cm2

 

laugh

 Aug 2, 2019
 #2
avatar+9488 
+5

 

Because the exterior angle of an octagon is 45°, we can extend 
sides  BA  and  GH  to  point  J  to create 45-45-90 triangle AJH 
  
In △AJH, 
the side across from the 90° angle  =  AH  =  2

 

 

the sides across from the 45° angles  =  AJ  =  JH  =  2 / √2  =  √2 
  
By the Pythagorean Theorem,

 

 

AG2  =  AJ2 + JG2

 

AG2  =  AJ2 + (JH + HG)2

 

 

AG2  =  (√2)2 + (√2 + 2)2

 

AG2  =  2 + 2 + 4√2 + 4

 

 

AG2  =  8 + 4√2

 

AG2  ≈  13.657

 

 

That is in square cm.

 

 Aug 2, 2019
 #3
avatar+130491 
+2

Using the Law of Sines....we have that

 

(1/2) side length of  the square  / sin (67.5°)   = 2 / sin (90°)          .....multiply both sides by 2.....

 

side length of the square =  4 sin (67.5°)  =  4 √ [  (1  - cos (135°)  ) / 2 ] =  4 √  [ (1 + √2 /2) / 2 ]  =  4 √  [ (2 + √2)/4 ] 

 

So....the area of the square is the square of this  =   16 (2 + √2)/4  =  4 (2 + √2) units^2

 

 

 

cool cool cool

 Aug 2, 2019

1 Online Users

avatar