Find the value of
Sn=12+322+523+...+2n−32n−1+2n−12n
Let x=12
Sn=x+3x2+5x3+7x4+...+(2n−3)xn−1+(2n−1)xnxSn=1x2+3x3+5x4+...+(2n−5)xn−1+(2n−3)xn+(2n−1)xn+1x−xSn=x+2x2+2x3+2x4+...+2xn−1+2xn−(2n−1)xn+1Sn(1−x)=x+2∗(x2+x3+x4+...+xn−1+xn)−(2n−1)xn+1x2+x3+x4+...+xn−1+xn=x2−xn+11−xSn(1−x)=x+2∗x2−xn+11−x−(2n−1)xn+1|1−x=1−12=12Sn∗12=x+4(x2−xn+1)−(2n−1)xn+1|∗2Sn=2x+8(x2−xn+1)−2(2n−1)xn+1Sn=2x+8x2−8xn+1−2(2n−1)xn+1Sn=2x+8x2−2xn+1(4+(2n−1))Sn=2x+8x2−2xn+1(2n+3)Sn=2x(1+4x−xn(2n+3))|x=12Sn=1+2−2n+32nSn=3−2n+32n