Processing math: 100%
 
+0  
 
0
85
3
avatar

Find the non-zero value of $a$ such that the quadratic equation $ax^2+8x+4=6x-40$ has only one solution.

 Sep 6, 2023

Best Answer 

 #2
avatar+189 
+1

The given quadratic equation is ax2+8x+4=6x40. First, simplify it to standard form.

 

ax2+8x+4=6x40ax2+2x+44=0

 

Now, we can use the discriminant of a quadratic, which gives information about the number of solutions. In order for the quadratic to have only one solution, the discriminant should be equal to 0.

 

D=0b24ac=0224a444176a=0176a=4a=4176a=144

 Sep 7, 2023
 #1
avatar+12 
0

 

 

(2x + 2)(2x + 2) = 0   so   a = 4 

 Sep 6, 2023
edited by SoloX  Sep 6, 2023
 #2
avatar+189 
+1
Best Answer

The given quadratic equation is ax2+8x+4=6x40. First, simplify it to standard form.

 

ax2+8x+4=6x40ax2+2x+44=0

 

Now, we can use the discriminant of a quadratic, which gives information about the number of solutions. In order for the quadratic to have only one solution, the discriminant should be equal to 0.

 

D=0b24ac=0224a444176a=0176a=4a=4176a=144

The3Mathketeers Sep 7, 2023
 #3
avatar+37170 
+1

Nice work, The3Mathketeers ! 

ElectricPavlov  Sep 7, 2023

3 Online Users

avatar
avatar