Prove that if w, z are complex numbers such that |w| = |z| = 1 and wz≠−1, then w+z1+wz is a real number.
Prove that if w, z are complex numbers such that |w|=|z|=1 and wz≠−1,
then w+z1+wz is a real number.
|w|=1 ⇒ |w|2=1|z|=1 ⇒ |z|2=1
w+z1+wz=w1+wz+z1+wz=11w+z+11z+w|1w=ˉw|w|2=ˉw, 1z=ˉz|z|2=ˉz=1ˉw+z+1ˉz+w=ˉz+w+ˉw+z(ˉw+z)(ˉz+w)=(w+ˉw)+(z+ˉz)(ˉw+z)(w+ˉz)|w=a+bi,ˉw=a−bi,z=c+di,ˉz=c−di=(a−bi+a−bi)+(c+di+c−di)(a−bi+c+di)(a+bi+c−di)=2(a+c)[ (a+c)+(d−b)i ][ (a+c)−(d−b)i ]=2(a+c)[ (a+c)2−(d−b)2i2 ]|i2=−1=2(a+c)(a+c)2+(d−b)2