Processing math: 100%
 
+0  
 
0
1
2330
2
avatar

Prove that if w, z are complex numbers such that |w| = |z| = 1 and wz1, then w+z1+wz is a real number.

 Sep 19, 2018
 #1
avatar+26400 
+10

Prove that if w, z are complex numbers such that |w|=|z|=1 and wz1,

then w+z1+wz  is a real number.

 

|w|=1  |w|2=1|z|=1  |z|2=1

 

w+z1+wz=w1+wz+z1+wz=11w+z+11z+w|1w=ˉw|w|2=ˉw, 1z=ˉz|z|2=ˉz=1ˉw+z+1ˉz+w=ˉz+w+ˉw+z(ˉw+z)(ˉz+w)=(w+ˉw)+(z+ˉz)(ˉw+z)(w+ˉz)|w=a+bi,ˉw=abi,z=c+di,ˉz=cdi=(abi+abi)+(c+di+cdi)(abi+c+di)(a+bi+cdi)=2(a+c)[ (a+c)+(db)i ][ (a+c)(db)i ]=2(a+c)[ (a+c)2(db)2i2 ]|i2=1=2(a+c)(a+c)2+(db)2

 

laugh

 Sep 20, 2018
 #2
avatar+6252 
+2

w+z1+wz=(w+z)(1+wz)(1+wz)(1+wz)=w+z+w(wz)+z(wz)|1+wz|2

 

The denominator is real so we just need to show the numerator is also real

 

Noting that (wz)=wz we havew+z+w(wz)+z(wz)=w+z+wwz+zzw=w+z+1z+1w=(w+w)+(z+z)=2Re(w)+2Re(z)=2Re(w+z)R

 Sep 20, 2018

0 Online Users