Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+5
1942
2
avatar

prove 

sec2x = (sec^2x*csc^2x)/ (csc^2x - sec^2x)
I tried to make it with no sucsess
Many thanks

 Feb 24, 2017

Best Answer 

 #2
avatar+26397 
+25

prove 
sec2x = (sec^2x*csc^2x)/ (csc^2x - sec^2x)

 

sec2(x)csc2(x)csc2(x)sec2(x)=1csc2(x)sec2(x)sec2(x)csc2(x)=1csc2(x)sec2(x)csc2(x)sec2(x)sec2(x)csc2(x)=11sec2(x)1csc2(x)|1sec(x)=cos(x)1csc(x)=sin(x)=1cos2(x)sin2(x)|cos(2x)=cos2(x)sin2(x)=1cos(2x)|1cos(x)=sec(x)=sec(2x)

 

laugh

 Feb 24, 2017
 #1
avatar+130477 
0

sec2x = (sec^2x*csc^2x)/ (csc^2x - sec^2x)    simplify the right side

 

(sec^2x*csc^2x)/ (csc^2x - sec^2x)   =

 

( 1/cos^2x * 1 / sin^2x)  / ( 1/sin^2x -  1/cos^2x)  =

 

Get a common denominator for the fractions in the denominator  = sin^2xcos^2x

 

[ 1/(cos^2x sin^2x)] / [ ( cos^2x - sin^2x) / ( sin^2x cos^2x) ]  =

 

Invert the fraction in the denominator and multiply by the numerator

 

[ 1/(cos^2x sin^2x) ] * (sin^2x cos^2x)  / [cos^2x - sin^2x]  =

 

1 / [ cos^2x  - sin^2x ] =

 

1/ cos2x    =

 

sec2x

 

 

 

cool cool cool

 Feb 24, 2017
 #2
avatar+26397 
+25
Best Answer

prove 
sec2x = (sec^2x*csc^2x)/ (csc^2x - sec^2x)

 

sec2(x)csc2(x)csc2(x)sec2(x)=1csc2(x)sec2(x)sec2(x)csc2(x)=1csc2(x)sec2(x)csc2(x)sec2(x)sec2(x)csc2(x)=11sec2(x)1csc2(x)|1sec(x)=cos(x)1csc(x)=sin(x)=1cos2(x)sin2(x)|cos(2x)=cos2(x)sin2(x)=1cos(2x)|1cos(x)=sec(x)=sec(2x)

 

laugh

heureka Feb 24, 2017

1 Online Users

avatar