prove
sec2x = (sec^2x*csc^2x)/ (csc^2x - sec^2x)
I tried to make it with no sucsess
Many thanks
prove
sec2x = (sec^2x*csc^2x)/ (csc^2x - sec^2x)
sec2(x)⋅csc2(x)csc2(x)−sec2(x)=1csc2(x)−sec2(x)sec2(x)⋅csc2(x)=1csc2(x)sec2(x)⋅csc2(x)−sec2(x)sec2(x)⋅csc2(x)=11sec2(x)−1csc2(x)|1sec(x)=cos(x)1csc(x)=sin(x)=1cos2(x)−sin2(x)|cos(2x)=cos2(x)−sin2(x)=1cos(2x)|1cos(x)=sec(x)=sec(2x)
sec2x = (sec^2x*csc^2x)/ (csc^2x - sec^2x) simplify the right side
(sec^2x*csc^2x)/ (csc^2x - sec^2x) =
( 1/cos^2x * 1 / sin^2x) / ( 1/sin^2x - 1/cos^2x) =
Get a common denominator for the fractions in the denominator = sin^2xcos^2x
[ 1/(cos^2x sin^2x)] / [ ( cos^2x - sin^2x) / ( sin^2x cos^2x) ] =
Invert the fraction in the denominator and multiply by the numerator
[ 1/(cos^2x sin^2x) ] * (sin^2x cos^2x) / [cos^2x - sin^2x] =
1 / [ cos^2x - sin^2x ] =
1/ cos2x =
sec2x
prove
sec2x = (sec^2x*csc^2x)/ (csc^2x - sec^2x)
sec2(x)⋅csc2(x)csc2(x)−sec2(x)=1csc2(x)−sec2(x)sec2(x)⋅csc2(x)=1csc2(x)sec2(x)⋅csc2(x)−sec2(x)sec2(x)⋅csc2(x)=11sec2(x)−1csc2(x)|1sec(x)=cos(x)1csc(x)=sin(x)=1cos2(x)−sin2(x)|cos(2x)=cos2(x)−sin2(x)=1cos(2x)|1cos(x)=sec(x)=sec(2x)