2x ( x + 10 ) = -50 | :2
x ( x + 10 ) = -25
x^2 + 10x = -25 | + 25
x^2 + 10x + 25 = 0
Use quadratic formula:
-b ± sqrt ( b^2 - 4ac ) -10 ± sqrt ( 10^2 - 4 * 1 * 25 ) -10 ± sqrt ( 100 - 100 ) -10 ± sqrt ( 0 ) -10
------------------------------ = --------------------------------------- = ------------------------------ = --------------------- = ----------- = -5 ± 0, so:
2a 2 2 2 2
x_1 = -5
x_2 = 5
( - 5 ) + 5 = 0.
The answer is 0.
2x(x + 10) = -50 expand and simplify to
2x^2 + 20x + 50 = 0 or
x^2 + 10x + 25 =0
(x+5)(x+5) = 0 shows only one root x = - 5 (a 'double root')
sum = -5
2x(x + 10) = -50
2x^2 + 20x = -50
2x^2 + 20x + 50 = 0
Using VIeta's formulas, the sum of roots of the quadratic ax^2 + bx + c = 0 is -b/a.
-b/a = -20/2 = -10.
(As ElectricPavlov has solved this question, the two roots are -5 and -5, which sum to -10 as expected.)
2x(x+10)=−50
2x2+20x=−50
2x2+20x+50=−50+50
2x2+20x+50=0
x1,2=−20±√202−4⋅2⋅502⋅2
x1,2=−20±√02⋅2
x=−202⋅2
x=−5
so the value is -5
so -5!
hope this helps!,
XxmathguyxX