Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1346
2
avatar

There's some number of triangles satisfying
What is the sum of all the possible values of BC? If there are no possible values, answer with 0.

 May 22, 2019
 #1
avatar+9488 
+2
 May 22, 2019
 #2
avatar+26396 
+3

There's some number of triangles satisfying
What is the sum of all the possible values of BC? If there are no possible values, answer with 0.

 

 

cos-rule:

a2=b2+c22bccos(A)cos(A)=b2+c2a22bc

 

projection-rule:

b=ccos(A)+acos(C)|cos(A)=b2+c2a22bcb=c(b2+c2a22bc)+acos(C)b=b2+c2a22b+acos(C)|2b2b2=b2+c2a2+2abcos(C)b2=c2a2+2abcos(C)a22abcos(C)+b2c2=0a=2bcos(C)±4b2cos2(C)4(b2c2)2a=bcos(C)±4b2cos2(C)4(b2c2)2a1+a2=2bcos(C)|b=10,C=π6=210cos(π6)|cos(π6)=32=21032=103a1+a2=17.3205080757

 

The sum of all the possible values of BC is 17.3205080757

 

laugh

 May 22, 2019

2 Online Users

avatar
avatar