If a and b are nonzero real numbers such that |a|≠|b|, compute the value of the expression(b2a2+a2b2−2)×(a+bb−a+b−aa+b)×(1a2+1b21b2−1a2−1b2−1a21a2+1b2).
First term simplified = ( b^4 + a^4 - 2a^2b^2) (a^2 - b^2)^2
___________________ = ___________
a^2b^2 a^2b^2
Second term simplified = [(a + b)^2 + (b - a)^2 ] 2a^2 + 2b^2 2 (a^2 + b^2)
___________________ = ____________ = __________
b^2 - a^2 - (a^2 - b^2) - (a^2 - b^2)
Third term simplified = b^2 + a^2 a^2 - b^2
_________ - ___________ =
a^2 - b^2 a^2 + b^2
(a^2 + b^2)^2 - (a^2 - b^2)^2
________________________ =
(a^2 - b^2) (a^2 + b^2)
[ (a^2 + b^2) + (a^2 - b^2] * [ (a^2 + b^2) - ( a^2 - b^2) ] ( 2a^2) ( 2b^2)
____________________________________________ = __________________ =
(a^2 - b^2) ( a^2 + b^2) (a^2 - b^2)(a^2 + b^2)
4a^2b^2
__________________
(a^2 - b^2) (a^2 + b^2)
Mutiplying the first term by the third we have
(a^2 - b^2)^2 4a^2b^2 4(a^2 - b^2)
____________ * _____________________ = _____________
a^2b^2 (a^2 - b^2) (a^2 + b^2) (a^2 + b^2)
Multiply this result by the second term and we have
4(a^2 - b^2) 2(a^2 + b^2) 4 * 2
___________ * ____________ = ______ = - 8
(a^2 + b^2) - (a^2 - b^2) -1
Also...
since the value must be the same for all nonzero real numbers a and b such that |a| ≠ |b|
then we can choose for instance a = 1 and b = 2 and evaluate the expression.
=(b2a2+a2b2−2)×(a+bb−a+b−aa+b)×(1a2+1b21b2−1a2−1b2−1a21a2+1b2) =(2212+1222−2)×(1+22−1+2−11+2)×(112+122122−112−122−112112+122) =(41+14−2)×(31+13)×(11+1414−11−14−1111+14) =(94)×(103)×(54−34−−3454) =(94)×(103)×(5−3−−35) =(94)×(103)×(−1615) =(11)×(21)×(−41) =−8
And to make triple-sure, here's what WolframAlpha's result.