If f( -x ) = f(x) then the function is even.
If f( -x ) = -f(x) then the function is odd.
f(x)=5x−15x+1
Plug in -x for x
f(−x)=5(−x)−15(−x)+1
Now we are looking for a way rewrite the right side so that f(x) appears.
Let's rewrite 5(-x) as 1 / 5x
f(−x)=15x−115x+1
Multiply the numerator and denominator by 5x
f(−x)=15x−115x+1⋅5x5x
Distribute the 5x to the terms in the numerator and denominator
f(−x)=1−5x1+5x
Factor -1 out of the numerator.
f(−x)=−1(−1+5x)1+5x
Addition can be done in any order so we can rearrange the terms like this..
f(−x)=−1(5x−1)5x+1
Now we can write the -1 beside the fraction like this...
f(−x)=−1⋅5x−15x+1
Finally, f(x) has appeared! f(x)=5x−15x+1 so we can substitute f(x) in for 5x−15x+1
f(−x)=−1⋅f(x)
f(−x)=−f(x)
Remember that if f( -x ) = -f(x) then the function is odd.
Since f( -x ) = -f(x) , the function is odd.
If f( -x ) = f(x) then the function is even.
If f( -x ) = -f(x) then the function is odd.
f(x)=5x−15x+1
Plug in -x for x
f(−x)=5(−x)−15(−x)+1
Now we are looking for a way rewrite the right side so that f(x) appears.
Let's rewrite 5(-x) as 1 / 5x
f(−x)=15x−115x+1
Multiply the numerator and denominator by 5x
f(−x)=15x−115x+1⋅5x5x
Distribute the 5x to the terms in the numerator and denominator
f(−x)=1−5x1+5x
Factor -1 out of the numerator.
f(−x)=−1(−1+5x)1+5x
Addition can be done in any order so we can rearrange the terms like this..
f(−x)=−1(5x−1)5x+1
Now we can write the -1 beside the fraction like this...
f(−x)=−1⋅5x−15x+1
Finally, f(x) has appeared! f(x)=5x−15x+1 so we can substitute f(x) in for 5x−15x+1
f(−x)=−1⋅f(x)
f(−x)=−f(x)
Remember that if f( -x ) = -f(x) then the function is odd.
Since f( -x ) = -f(x) , the function is odd.