Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+3
33
2
avatar+302 

Please evaluate1/1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+...+2018)

Best Answer 

 #1
avatar+410 
+2

11(1+1)2+12(2+1)2++12018(2018+1)2

21(2)+22(3)++22018(2019)

2(11(2)+12(3)++12018(2019))
Apply 1n(n+1)=1n1n+1

2(1112+1213+12019)

2(112019)

40362019

.
 Apr 4, 2024
 #1
avatar+410 
+2
Best Answer

11(1+1)2+12(2+1)2++12018(2018+1)2

21(2)+22(3)++22018(2019)

2(11(2)+12(3)++12018(2019))
Apply 1n(n+1)=1n1n+1

2(1112+1213+12019)

2(112019)

40362019

hairyberry Apr 4, 2024

2 Online Users