Processing math: 100%
 
+0  
 
+1
808
2
avatar+27 

9.) Transform each polar equation to an equation in rectangular coordinates and identify its shape:\

r = (4 / (2cosθ - 3sinθ));

 

10.) compute the modulus and argument of each complex number.

 a.) -5

b. )-5 + 5i

 May 28, 2019

Best Answer 

 #1
avatar+9488 
+3

9.)

 

r = 42cosθ3sinθ r(2cosθ3sinθ) = 4 2rcosθ3rsinθ = 4 2x3y = 4  becausex=rcosθandy=rsinθ 2x = 4+3y 2x4 = 3y 23x43 = y y = 23x43

 

This is the equation of a line with a slope of   23   and a y-intercept of  43 .

 

Check: https://www.desmos.com/calculator/7dq2bqym7k

(You can show or hide the second equation by clicking the gray circle to the left of it. )

 May 28, 2019
 #1
avatar+9488 
+3
Best Answer

9.)

 

r = 42cosθ3sinθ r(2cosθ3sinθ) = 4 2rcosθ3rsinθ = 4 2x3y = 4  becausex=rcosθandy=rsinθ 2x = 4+3y 2x4 = 3y 23x43 = y y = 23x43

 

This is the equation of a line with a slope of   23   and a y-intercept of  43 .

 

Check: https://www.desmos.com/calculator/7dq2bqym7k

(You can show or hide the second equation by clicking the gray circle to the left of it. )

hectictar May 28, 2019
 #2
avatar+130477 
+1

10.) compute the modulus and argument of each complex number.

 a.)   -5

We have the form      -5 + 0i

The modulus is   √ [ (-50^2 + 0^2 ]  =  √25  = 5

The argument is θ  so   tan θ  =   0 / -5  =  pi

 

b. )  -5 + 5i

 

Modulus  =  √[ (-5)^2 + (5)^2 ]  = √ [ 50]  = 5√2

The argument is θ  so   tan θ  =  5/-5  = - 1  =  3pi/4 

 

 

cool cool cool

 May 29, 2019

1 Online Users