Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2178
6
avatar

1. Let O be the origin. Points P and Q lie in the first quadrant. The slope of line segment ¯OP is 1 and the slope of line segment ¯OQ is 7. If OP=OQ, then compute the slope of line segment ¯PQ.

 

Note: The point (x,y) lies in the first quadrant if both x and y are positive.

 

2. The line y=3x+154 intersects the circle x2+y2=36 at A and B. Find the length of chord ¯AB.

 

3. Let A=(4,1)B=(6,2), and C=(1,2). There exists a point X and a constant k such that for any point PPA2+PB2+PC2=3PX2+k.
Find the constant k.

 

Thank you for your help!

 

P.S. There were no images given for any of these problems.

 May 14, 2020
 #1
avatar
0

Please ask only one question at a time.

 May 15, 2020
 #2
avatar
0

Ok sorry. Is anyone still willing to help me out?

 May 15, 2020
 #3
avatar+9489 
0

1.

 

P  is a point on the line   y = x   and   Q  is a point on the line  y = 7x.

 

So we can say...

 

Let  P  be the point  (a, a)           where  a > 0

Let  Q  be the point  (b, 7b)        where  b > 0

And  O  is the point  (0, 0)

 

Now we can make this equation:

 

the distance between  O  and  P   =   the distance between  O  and  Q

 

√[ a2 + a2 ]   =   √[ b2 + (7b)2 ]

                                                    Square both sides of the equation

a2 + a2   =   b2 + (7b)2

 

a2 + a2   =   b2 + 49b2

                                                    Combine like terms

2a2   =   50b2

                                                    Divide both sides by  2

a2   =   25b2

                                                    Take the positive square root of both sides

a   =   5b

 

the slope of  PQ   =   the slope between the points  (a, a)  and  (b, 7b)

 

the slope of  PQ   =   a7bab

                                                         Substitute  5b  in for  a

the slope of  PQ   =   5b7b5bb

                                                         Combine like terms

the slope of  PQ   =   2b4b

                                                         Reduce the fraction by  2b

the slope of  PQ   =   12

 

Here is a graph for this problem:  https://www.desmos.com/calculator/c9sjxvalqw

 May 15, 2020
 #4
avatar+9489 
0

2.

 

Let  (x, y)  be the solution to the system. We know it is true that

 

y  =  (3x + 15) / 4

 

We also know it is true that:

 

x2  +  y2   =   36

                                                          Since   y  =  3x+154  we can substitute  3x+154  in for  y

x2  +  (3x+154)2   =   36

 

x2  +  (3x+154)(3x+154)   =   36

 

x2  +  9x2+90x+22516   =   36

                                                          Multiply through by  16  to eliminate the denominator

16x2  +  9x2 + 90x + 225   =   576

                                                          Combine like terms

25x2  +  90x  +  225   =   576

                                                          Subtract  576  from both sides of the equation

25x2  +  90x  -  351   =   0

                                                         We can use the quadratic formula to solve for  x

x   =  9±1235

 

We can use the equation  y  =  (3x + 15) / 4   to find the y-coordinates of the intersection points.

 

When   x  =  9 + 1235   ,   y  =  14( 3( 9 + 1235 )+15 ) = 12 + 935

 

When   x  =  9  1235   ,   y  =  14( 3( 9  1235 )+15 ) = 12  935

 

So the intersection points are:

 

(9 + 1235, 12 + 935)     and     (9  1235, 12  935)

 

Check:  https://www.desmos.com/calculator/jfndjchrhd

 

We can find the distance between those two points using the distance formula.

 

distance   =   (9 + 1235  9  1235)2 + (12 + 935  12  935)2

 

distance   =   (2435)2 + (1835)2

 

distance   =   172825 + 97225

 

distance   =   270025

 

distance   =   63

 May 15, 2020
 #5
avatar+9489 
0

3.

 

Let  P  be the point  (x, y)

 

So...

 

PA = (x4)2+(y+1)2 PB = (x6)2+(y2)2 PC = (x+1)2+(y2)2  PA2+PB2+PC2 = (x4)2+(y+1)2 + (x6)2+(y2)2 + (x+1)2+(y2)2 PA2+PB2+PC2 = 3x218x+3y26y+62 PA2+PB2+PC2 = 3(x26x+y22y)+62 PA2+PB2+PC2 = 3(x26x+99 + y22y+11)+62 PA2+PB2+PC2 = 3((x3)29 + (y1)21)+62 PA2+PB2+PC2 = 3((x3)2 + (y1)210)+62 PA2+PB2+PC2 = 3((x3)2 + (y1)2)30+62 PA2+PB2+PC2 = 3((x3)2 + (y1)2)+32

 

 

So  X  must be the point  (3, 1)   and  k  must be  32

 May 15, 2020
 #6
avatar
+1

Thank you! These were very helpful.

 May 15, 2020

2 Online Users