Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
 
+0  
 
0
764
2
avatar

How do you solve this problem?

 

Are the lines perpendicular?

 

7y =9x+21

 

-3y=x-24

 Oct 23, 2015

Best Answer 

 #2
avatar+26396 
+30

How do you solve this problem?

Are the lines perpendicular?

 

7y =9x+21

-3y=x-24

 

They are not perpendicular because:

 

Line 1:

7y=9x+21y=98x+3 The slope is :m1=98

 

Line 2:

3y=x24y=13x+8 The slope is :m2=13

 

perpendicular:  m1m2=1 

m1m2=98(13)m1m2=983m1m2=924m1m2=38m1m2=0.3750.3751not perpendicular

 Oct 23, 2015
 #1
avatar
0

 

 

Here are the solutions for your equations. You have to graph them to decide if the lines are perpendicular. I myself think they will criss cross. This is how you plot them:

ContourPlot[{7 y = 21 + 9x, -3y = -24 + x}, {x, 71/34, 139/34}, {y, 203/34, 271/34}]

 

Solve the following system:
{7 y = 9 x+21 |     (equation 1)
-3 y = x-24 |     (equation 2)
Express the system in standard form:
{-(9 x)+7 y = 21 |     (equation 1)
-x-3 y = -24 |     (equation 2)
Subtract 1/9 × (equation 1) from equation 2:
{-(9 x)+7 y = 21 |     (equation 1)
0 x-(34 y)/9 = (-79)/3 |     (equation 2)
Multiply equation 2 by -9:
{-(9 x)+7 y = 21 |     (equation 1)
0 x+34 y = 237 |     (equation 2)
Divide equation 2 by 34:
{-(9 x)+7 y = 21 |     (equation 1)
0 x+y = 237/34 |     (equation 2)
Subtract 7 × (equation 2) from equation 1:
{-(9 x)+0 y = (-945)/34 |     (equation 1)
0 x+y = 237/34 |     (equation 2)
Divide equation 1 by -9:
{x+0 y = 105/34 |     (equation 1)
0 x+y = 237/34 |     (equation 2)
Collect results:
Answer: | 
| {x = 105/34
y = 237/34

 Oct 23, 2015
 #2
avatar+26396 
+30
Best Answer

How do you solve this problem?

Are the lines perpendicular?

 

7y =9x+21

-3y=x-24

 

They are not perpendicular because:

 

Line 1:

7y=9x+21y=98x+3 The slope is :m1=98

 

Line 2:

3y=x24y=13x+8 The slope is :m2=13

 

perpendicular:  m1m2=1 

m1m2=98(13)m1m2=983m1m2=924m1m2=38m1m2=0.3750.3751not perpendicular

heureka Oct 23, 2015

3 Online Users

avatar
avatar