Compute $999^{-1}$ modulo 1000. Express your answer as an integer from 0 to 999.
Compute the inverse of 999 modulo 1000. Express your answer as an integer from 0 to 999.
999*-1 = 1000*-1+1
So the inverse is -1
but you want an integer from 0 to 999 so
1000-1 = 999
the inverse of 999 mod 1000 is 999
check
999*999=998001 = 1 (mod1000)
Compute 999−1(mod1000).
Express your answer as an integer from 0 to 999.
Modular multiplicative inverse using Euler's theorem
999−1(mod1000)≡1999(mod1000)|gcd(1000,999)=1!≡999ϕ(1000)−1(mod1000)|999≡−1(mod1000)≡(−1)ϕ(1000)−1(mod1000)|ϕ(1000)=400 (Euler torent function)≡(−1)400−1(mod1000)≡(−1)399(mod1000)≡−1(mod1000)≡−1+1000(mod1000)999−1(mod1000)≡999(mod1000)