Processing math: 100%
 
+0  
 
0
504
2
avatar

Compute $999^{-1}$ modulo 1000. Express your answer as an integer from 0 to 999.

 May 28, 2021
 #1
avatar+118706 
+1

Compute the  inverse of 999  modulo 1000. Express your answer as an integer from 0 to 999.

 

999*-1 = 1000*-1+1

So the inverse is -1

but you want an integer from 0 to 999 so

1000-1 = 999

the inverse of 999 mod 1000 is 999 

 

check

999*999=998001 = 1 (mod1000)

 May 28, 2021
 #2
avatar+26397 
+2

Compute 9991(mod1000).

Express your answer as an integer from 0 to 999.

 

Modular multiplicative inverse using Euler's theorem

9991(mod1000)1999(mod1000)|gcd(1000,999)=1!999ϕ(1000)1(mod1000)|9991(mod1000)(1)ϕ(1000)1(mod1000)|ϕ(1000)=400  (Euler torent function)(1)4001(mod1000)(1)399(mod1000)1(mod1000)1+1000(mod1000)9991(mod1000)999(mod1000)

 

laugh

 May 28, 2021

1 Online Users

avatar