Loading [MathJax]/extensions/TeX/mathchoice.js
 
+0  
 
0
35
1
avatar+608 

What is the smallest prime divisor of 5^{19} + 7^{13} + 23?

 Jul 24, 2024
 #1
avatar+1950 
+1

We can use handy tricks to solve this problem. 

Let's focus on the last digit of the sum. This will come in handy. 

 

- 5 raised to any power will end in 5

 

7's last digit follows a pattern

71=772=4973=34374=2401

 

- Since it repeats in groups of 4 7^13  ends in 7

 

519+713+23    will end in  5+7+3=5

This means 2 cannot be a divisor. 

The smallest  prime divisor wil either be 3  or 5


 

The smallest prime divisor is 5

 

Thanks! :)

 Jul 24, 2024
edited by NotThatSmart  Jul 24, 2024

1 Online Users