Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
461
3
avatar

When N is divided by 10, the remainder is a. When N is divided by 11, the remainder is b. What is N modulo 110, in terms of a and b?

 Jun 21, 2021
 #1
avatar+287 
+1

Do you know the Chinese Remainder Theorem?   You can apply it directly to this problem.

 Jun 21, 2021
 #2
avatar+26396 
+2

When n is divided by 10, the remainder is a.
When n is divided by 11, the remainder is b.
What is n modulo 110, in terms of a and b?

 

na(mod10)orn=a+10r, rZnb(mod11)orn=b+11s, sZnx(mod110)|110=1011

 

n=a+10r|1111n=11a+1011r(1)n=b+11s|1010n=10b+1011s(2)(1)(2):11n10n=11a+1011r10b1011sn=11a10b+1011(rs)|let rs=tn=11a10b+1011t|110=1011n=11a10b+110t(3)

 

n=11a10b+110t(3)n=11a10b=x(mod110)

 

n(mod110)11a10b

 

laugh

 Jun 21, 2021
 #3
avatar+118703 
+1

Thanks Heureka,

That is a really neat solution   laugh

Melody  Jun 21, 2021

5 Online Users

avatar
avatar
avatar