Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
855
4
avatar

Given the two vectors below, find the angle between them. Round answers to the nearest hundredth. v=⟨−13,−1⟩v=⟨−13,−1⟩ w=⟨19,−3.1⟩

 Mar 28, 2017
 #1
avatar+130466 
+1

cos (theta)  =   [ u dot v ] /  [ length of u * length of v ]

 

u  = (-13, -1)   v   = (19, -3.1)

 

u dot v  =  ( -13 * 19  +   -1 * -3.1)  =  (-247 + 3.1)  = -243.9

 

Length of u   =   sqrt[ 13^2 + 1^1) =  sqrt (170)

Length of v  = sqrt ( 19^2 + 3.1^2)   = sqrt (370.61)

 

 

cos (theta  =   -243.9 / [ sqrt (170) * sqrt ( 370.61) ]

 

arccos  [ -243.9 / [ sqrt (170) * sqrt (370.61) ] = theta  ≈  166.33°

 

 

cool cool cool

 Mar 28, 2017
 #2
avatar+130466 
0

Sorry.....the vectors should be noted as v and w, not u and v....but......the the same procedure holds

 

 

 

cool cool cool

CPhill Mar 28, 2017
 #4
avatar+26396 
+4

Given the two vectors below, find the angle between them. Round answers to the nearest hundredth.

v=⟨−13,−1⟩ w=⟨19,−3.1⟩

 

v=(131)w=(193.1)

 

tan(φ)=|v×w|vw=|(131)×(193.1)|(131)(193.1)=(13)(3.1)(1)19(13)19+(1)(3.1)=40.3+19247+3.1=59.3243.9|+ Quadrant  II.=59.3243.9tan(φ)=0.24313243132φ=arctan(0.24313243132)+180=13.6653125958+180φ=166.334687404

 

The angle between v and w is 166.33

 

laugh

 Mar 28, 2017

2 Online Users